INSIDE OUT PAINTING AND REMODELING

SITE PLAN

SP#07-24

STAFF REPORT

February 12, 2025

SITE: 100 Lowell Road, Map 198/Lot 147-000

ZONING: Business (B)

PURPOSE OF PLAN: Development of a 6,855 square-foot commercial building to support a painting business, including a business office, and conditioned space to store materials.

PLAN UNDER REVIEW:

Commercial Development Site Plan Inside Out Painting and Remodeling SP# 07-24, Map 198 Lot 147, 100 Lowell Road, Hudson, NH; prepared by: SFC Engineering, 183 Rockingham Road Unit 3, Windham, 03087; prepared for: 100 Lowell Rd LLC, 112 Lowell Road, Suite 3, Hudson, NH 03051; consisting of 9 sheets and general notes 1-18 on Sheet 3; dated October 2, 2024, revised January 7, 2025.

ATTACHMENTS:

- 1) Application with associated waiver request, received October 2, 2024, revised November 1, 2024 Attachment "A".
- 2) Project Narrative Attachment "B"
- 3) Department Review Comments Attachment "C".
- 4) Traffic Impact Study (TIS), prepared by Vanasse & Associates, Inc. (VAI), dated October 1, 2024, revised November 25, 2024 Attachment "**D**".
- 5) Stormwater Management Report, prepared by SFC Engineering, dated October 2, 2024, revised January 7, 2025 Attachment "E".
- 6) Comment Response Letter, prepared by SFC Engineering, dated January 7, 2025 Attachment "F".
- 7) Traffic Impact Study (TIS) peer review, prepared by Fuss & O'Neill, dated October 29, 2024 Attachment "G".
- 8) Site Plan dated October 2, 2024, Revised January 7, 2025.

APPLICATION TRACKING:

- October 2, 2024 Site plan application received.
- November 13, 2024 Public Hearing held, continued to February 12, 2025.
- February 12, 2025 Public Hearing scheduled.

WAIVERS REQUESTED:

§276-11.1.B. (9) – General Plan Requirements (Error of Closure) §275-8.C. (2) (m) – Parking Calculations

> SP# 07-24 Staff Report Page 1 of 5

§193-10.G – Number of Driveways
§275-8.C. (6). (b) – Loading Space Dimensions
§276-11.1.B. (12). (c) – 100' Residential Buffer

COMMENTS & RECOMMENDATIONS:

BACKGROUND

The site is approximately 0.8 acres and is located in the Business zone. The site was previously occupied by a single-family residence which was razed over a decade ago. The site is served by Town water and sewer and has pre-existing connections. No section of the property falls within FEMA designated flood zones. The site contains no wetlands, and is relatively flat within the primary buildable area. The site currently has two curb cuts, approximately located where the proposed entrance and exit drive are proposed. The applicant is seeking a total of five waivers, for which additional information may be found below.

DEPARTMENT COMMENTS

Department staff have indicated that all comments have been resolved.

Full Comments can be found in Attachment "C."

WAIVERS REQUESTED

As noted above, the Applicant is seeking a total of five waivers:

- Waiver for Site Plan Scale, §276-11.1.B.(9)–Error of Closure, to allow the usage of PE stamped plans of bounds in lieu of a NH Licensed Surveyor, pursuant to RSA 310-A:2-IV. The Applicant states that the listed RSA grants permission for a PE stamp to be sufficient when bounds are not being re-drawn or altered.
- 2. Waiver for parking spaces, §275-8.C. (2) (m)–Parking Calculations, to allow for 11 parking spaces where 23 would be required. The applicant states that of the gross area, 3300 is intended for traditional office use, with the rest dedicated to material storage. The applicant notes in addition that the location is not open to customer visits or the public, and that the business only has 7 employees.
- 3. Waiver for number of Driveways, **§193-10.G Number of Driveways**, to allow for two driveways where only one is allowed. Applicant states that this is pursuant to recommendations provided by the traffic engineer.
- 4. Waiver for the loading space dimensions, **§275-8.C.(6).(b)** Loading Space Dimensions, to allow for a loading space of only 35' where elsewise a loading space of 60' would be required. The applicant states that a 60' loading space is not needed as the delivery trucks for the site are not full sized tractor-trailers.
- 5. Waiver for the 100' residential buffer, §276-11.1.B. (12). (c) 100' Residential Buffer, to allow for development within 100' of a residential use. The applicant states that the development within 100' will be parking, and is 15' below grade of the house alongside being screened by vegetation.

A waiver for §276-11.1.B. (9)–Error of Closure was granted at the November 13, 2024 meeting.

PEER REVIEW

Fuss & O'Neill completed a review of the proposed plan set on October 23, 2024. The majority of issues outlined within the review are administrative in nature, with no major design flaws noted.

SFC Engineering has prepared a response letter to peer review and department comments dated January 7, 2025, which may be found in Attachment "F".

TRAFFIC STUDY

As part of their application, the applicant has supplied a traffic impact study completed by Vanasse & Associates, Inc. (VAI), dated October 1, 2024, Revised November 25, 2024. (Attachment "**D**"). In the report, VAI notes no meaningful increase in traffic on Lowell or County road, as would be expected from such a small development with no on-site service for customers. The revisions done per board, department, and peer review comments have not changed the conclusions of the report post-revision.

STORMWATER MANAGEMENT REPORT

As part of the application, a Stormwater Management Report dated October 2, 2024 has been supplied. The report was revised January 7, 2025 to accommodate changes in the catch basin and sewer design. This report concludes that no adverse downstream impacts shall occur, and that peak flow rates shall remain the same or diminish.

STAFF COMMENTS

Post revision and additional waivers completed staff does not have any remaining concerns with the proposal. The application does not have any outstanding issues that are known at this time.

RECOMMENDATIONS

Staff recommends deliberation and consideration of the site plan and waiver requests prior to potential approval. Staff has not identified any outstanding issues or additional information required for the board to make an appropriate decision on this application.

DRAFT MOTIONS:

MOTION TO GRANT A WAIVER:

I move to grant a waiver **§275-8.C.(2)(m)–Parking Calculations**, to allow for 14 parking spaces where 23 would be required, based on the Board's discussion, the testimony of the Applicant's representative, and in accordance with the language included in the submitted Waiver Request Form for said waiver.

Motion by: ______Second: _____Carried/Failed: _____

I move to grant a waiver **§193-10.G** – **Number of Driveways**, to allow for two driveways where elsewise only one would be allowed, based on the Board's discussion, the testimony of the Applicant's representative, and in accordance with the language included in the submitted Waiver Request Form for said waiver.

Motion by: _____ Second: _____ Carried/Failed: _____

I move to grant a waiver from §275-8.C.(6).(b) – Loading Space Dimensions, to allow for a loading space of only 35' where elsewise a loading space of 60' would be required, based on the Board's discussion, the testimony of the Applicant's representative, and in accordance with the language included in the submitted Waiver Request Form for said waiver.

Motion by: _____ Second: _____ Carried/Failed: _____

I move to grant a waiver from $\S276-11.1.B.(12).(c) - 100$ ' Residential Buffer, to allow for development within 100' of a residential use, based on the Board's discussion, the testimony of the Applicant's representative, and in accordance with the language included in the submitted Waiver Request Form for said waiver.

Motion by: _____Second: ____Carried/Failed: _____

MOTION TO CONTINUE:

I move to continue the Site Plan Application for Inside Out Painting and Remodeling (SP# 07-24) located at 100 Lowell Road, Hudson, New Hampshire, Map 198/Lot 147.

Motion by: ______Second: _____Carried/Failed: _____

MOTION TO APPROVE:

I move to approve the Site Plan Application: Inside Out Painting and Remodeling SP# 07-24, Map 198 Lot 147, 100 Lowell Road, Hudson, New Hampshire; prepared by: SFC Engineering, 183 Rockingham Road Unit 3, Windham, New Hampshire 03087; prepared for: 100 Lowell Rd LLC, 112 Lowell Road, Suite 3, Hudson, New Hampshire 03051; consisting of 9 sheets and general notes 1-18 on Sheet 3; dated October 2, 2024; and:

That the Planning Board finds that this application complies with the Zoning Ordinance, and with the Land Use Regulations with consideration of the waivers granted and for the reasons set forth in the written submissions, together with the testimony and factual representations made by the applicant during the public hearing;

Subject to, and revised per, the following stipulations:

- 1. All stipulations of approval shall be incorporated into the Development Agreement, which shall be recorded at the HCRD, together with the Plan.
- 2. Prior to the issuance of a final certificate of occupancy, an L.L.S. Certified "As-Built" site plan shall be provided to the Town of Hudson Land Use Department, confirming that the site conforms to the Planning Board approved Site Plan.

- 3. Prior to the Planning Board endorsement of the Plan, it shall be subject to final administrative review by Town Planner and Town Engineer.
- 4. A cost allocation procedure (CAP) amount of \$17,480.25 shall be paid prior to the issuance of a Certificate of Occupancy for the lot improvements to be done.
- 5. Prior to application for a building permit, the Applicant shall schedule a pre-construction meeting with the Town Engineer.
- 6. Construction activities involving the subject lot shall be limited to the hours between 7:00 A.M. and 7:00 P.M., Monday through Saturday. No exterior construction activities shall be allowed on Sundays.
- 7. Hours of refuse removal shall be exclusive to the hours between 7:00 A.M. and 7:00 P.M., Monday through Friday only.

Motion by:	Second:	Carried/Failed:	

SITE PLAN APPLICATION

Date of Application: <u>10/2/2024</u>	Tax Map #:	198	Lot #:	147
Site Address: 100 Lowell Road				
Name of Project: Inside Out Painting and	Remodeling			
Zoning District: Buisness	_General SP#:			
Z.B.A. Action:			(For Town Us	e Only)
PROPERTY OWNER:	DEVELOPER:	<u>.</u>		
Name: 100 Lowell Rd LLC				
Address: 122 Lowell Road, Suite 3				
Address: Hudson, NH 03051				
Telephone #(781)-844-3432				
Email: <u>dhamilton13@mac.com</u>				
PROJECT ENGINEER:	SURVEYOR:			
Name: SFC Engineering, Daniel M. Flores, PE	Ξ			
Address: 183 Rockingham Road, Unit 3 East				
Address: Windham, NH 03087				
Telephone # (603) 361-3294	<u> </u>			
Email: dflores@sfceng.com				

PURPOSE OF PLAN:

The purpose of this plan is to propose development of a 6,855 GSF commercial building for Inside Out Painting and Remodeling.

(For Town Use Only)			
Routing Date:	_ Deadline Date:	Meeting Date:	
I have no comments I have comments (attach to form)			
Title:		Date:	
(Initials)			
Department:			
Zoning: Engineering:	Assessor: Police: _	Fire: DPW: Const	ultant:

SITE DATA SHEET

PLAN NAME: Inside Out Painting and Remodeling					
PLAN TYPE: <u>SITE PLAN</u>					
LEGAL DESCRIPTION: MAP_	<u>198</u> LOT <u>147</u>				
DATE:10/2/2024					
Location by Street:	100 Lowell Road				
Zoning:	Business				
Proposed Land Use:	Business				
Existing Use:	Vacant (previously residentia	I)			
Surrounding Land Use(s):	Commercial, Residential				
Number of Lots Occupied:	1				
Existing Area Covered by Building:	0				
Existing Buildings to be removed:	0				
Proposed Area Covered by Building:	4,500 sqft				
Open Space Proposed:	18,254 sqft				
Open Space Required:	13,989 sqft				
Total Area:	S.F.: 34,848 Acres: 0.8				
Area in Wetland:	O Area Steep Slopes: <u>19,1</u>	<u>54 SF</u>			
Required Lot Size:	30,000 sqft				
Existing Frontage:	171				
Required Frontage:	150				
Building Setbacks:	Required* Propose	<u>ed</u>			
Front: Side: Rear:	50 13 15 16 15 17				

SITE DATA SHEET

	(Continued) Flood Insurance Rate Map for Town of	
Flood Zone Reference:	number 33011C0518D with effective da	ite of 9/25/2009
Width of Driveways:	20	
Number of Curb Cuts:	2	
Proposed Parking Spaces:	12	
Required Parking Spaces:	12	
Basis of Required Parking (Use):	Business (1SP/300 SF)	
Dates/Case #/Description/Stipulation of ZBA, Conservation Commission, NH Wetlands Board Actions: (Attach stipulations on separate sheet)	s N/A	
Waiver Requests Town Code Reference:	egulation Description:	
		-
	he error of closure performed by	_
lic	censed land surveyor	-
275-8.C.(2)(m) R	equired parking quantity	-

(For Toy	wn Use Only)
Data Sheets Checked By:	Date:

SITE PLAN APPLICATION AUTHORIZATION

I hereby apply for *Site Plan* Review and acknowledge I will comply with all of the Ordinances of the Town of Hudson, New Hampshire State Laws, as well as any stipulations of the Planning Board, in development and construction of this project. I understand that if any of the items listed under the *Site Plan* specifications or application form are incomplete, the application will be considered rejected.

Pursuant to RSA 674:1-IV, the owner(s) by the filing of this application as indicated above, hereby given permission for any member of the Hudson Planning Board, the Town Planner, the Town Engineer, and such agents or employees of the Town or other persons as the Planning Board may authorize, to enter upon the property which is the subject of this application at all reasonable times for the purpose of such examinations, surveys, tests and inspections as may be appropriate. The owner(s) release(s) any claim to or right he/she (they) may now or hereafter possess against any of the above individuals as a result of any examinations, surveys, tests and/or inspections conducted on his/her (their) property in connection with this applications.

Signature of Owner:	Steller M. Hande	Date:10/01/24
Print Name of Owner:	100 Lowell Rd LLC	

If other than an individual, indicate name of organization and its principal owner, partners, or corporate officers.

Signature of Developer:	Date:
Print Name of Developer:	

The developer/individual in charge must have control over all project work and be available to the Code Enforcement Officer/Building Inspector during the construction phase of the project. The individual in charge of the project must notify the Code Enforcement Officer/Building Inspector within two (2) working days of any change.

SCHEDULE OF FEES

A. <u>REVIEW FEES:</u>

1.	<u>Site Plan Use</u>	Project Size/Fee	
	Multi-Family	\$105.00/unit for 3-50 units \$78.50/unit for each additional unit over 50	\$
	Commercial/Semi Public/	Civic or Recreational \$157.00/1,000 sq. ft. for first 100,000 sq.ft. (bldg. area): \$78.50/1,000 sq.ft. thereafter.	\$ 1076.23
	Industrial	\$150.00/1,000 sq.ft for first 100,000 sq.ft. (bldg. area); \$78.50/1,000 sq.ft thereafter.	\$
	No Buildings	\$30.00 per 1,000 sq.ft. of proposed developed area	\$
~			

<u>CONSULTANT REVIEW FEE:</u> (Separate Check)

Total <u>0.8</u>	_ acres @ \$600.00 per acre, or \$1,250.00,	\$ <u>\$1,250</u>
whichever is grea	ter.	

This is an estimate for cost of consultant review. The fee is expected to cover the amount. A complex project may require additional funds. A simple project may result in a refund.

LEGAL FEE:

The applicant shall be charged attorney costs billed to the Town for the Town's attorney review of any application plan set documents.

B. <u>POSTAGE:</u>

C.

7 Direct Abutters Applicant, Professionals, etc. as required by RSA 676:4.1.d @\$5.08 (or Current Certified Mail Rate)	\$_	35.56
 <u>8</u> Indirect Abutters (property owners within 200 feet) @\$0.68 (or Current First Class Rate) 	\$_	5.44
TAX MAP UPDATING FEE: (FLAT FEE)	\$_	275.00
TOTAL	\$_	2,642.23

Name of Subdivision	/Site Plan:	Inside Out Painting a	Ind Remodel	ing	
Street Address:	100 Lowell F	Road			
I Daniel M. Flor	es, P.E.		hereby requ	est that the Plannin	ıg Board
waive the requiremen	ts of item 276	6-11.1.B.(9)	of the H	ludson Land Use Re	gulations
in reference to a plan	presented by	SFC Engineering			
		(name of surveyor and en	gineer) dated	10/2/2024	for
property tax map(s)	198	and lot(s) 147	in the Town	of Hudson, NH.	

As the aforementioned applicant, I, herein, acknowledge that this waiver is requested in accordance with the provisions set forth in RSA 674:36, II (n), i.e., without the Planning Board granting said waiver, it would pose an unnecessary hardship upon me (the applicant), and the granting of this waiver would not be contrary to the spirit and intent of the Land Use Regulations.

Hardship reason(s) for granting this waiver (if additional space is needed please attach the appropriate documentation hereto):

The error of closure by a NH licensed land surveyor will add unnecessary expense for development of an existing lot of record where no change to the boundary is proposed.

Reason(s) for granting this waiver, relative to not being contrary to the spirit and intent of the Land Use Regulations: (if additional space is needed please attach the appropriate documentation hereto): <u>The error of closure is irrelevant because this is an existing lot of record and no change</u> to the boundary is proposed. NH RSA 310-A:2-IV that allows for engineering surveys to be performed by a NH licensed professional engineer, which we include with our plan set. A survey performed by a NH licensed land surveyor is not required because this is an existing lot of record and no change to the boundary is proposed.

Signed: Applicant or Authorized Agent

DANIER M. FLORE, PE, ALISAT

Page 6 of 8 Site Plan Application - Hudson NH 04/2024

Name of Subdivision/Site Plan:	Inside Out Painting a	nd Remodeling	
Street Address: 100 Lowell	Road		
I Daniel M. Flores, P.E.		hereby request that the Plannin	g Board
waive the requirements of item 2	75-8.C.(2)(m)	of the Hudson Land Use Reg	gulations
in reference to a plan presented by	SFC Engineering		
	(name of surveyor and eng	ineer) dated 10/2/2024	for
property tax map(s) 198	and $lot(s)$ 147	in the Town of Hudson, NH.	

As the aforementioned applicant, I, herein, acknowledge that this waiver is requested in accordance with the provisions set forth in RSA 674:36, II (n), i.e., without the Planning Board granting said waiver, it would pose an unnecessary hardship upon me (the applicant), and the granting of this waiver would not be contrary to the spirit and intent of the Land Use Regulations.

Hardship reason(s) for granting this waiver (if additional space is needed please attach the appropriate documentation hereto):

Complying with the parking demand calculation in the site plan review regulations will result in unnecessary parking spaces.

Reason(s) for granting this waiver, relative to not being contrary to the spirit and intent of the Land Use Regulations: (if additional space is needed please attach the appropriate documentation hereto): <u>The parking calculation for business services is based on gross leasable area of the</u> <u>building, requiring 1 space per 300 sf, which requires 23 spaces for the 6855 sf gross</u> floor area building. The building area to be occupied for business use is closer to 3300 sf, with the remaining used for storage. At 3300 sf, 11 spaces are required, which the site provides. Note that the business employs 7 people and does not have customer visits.

Signed:

Applicant or Authorized Agen

DANIKL M. FLORES, PE, ACENT

Page 6 of 8 Site Plan Application - Hudson NH 04/2024

Name of Subdivision/Site Plan:	Inside Out Painting and	Remodeling	
Street Address: 100 Lowell F	Road		
I Daniel M. Flores, PE		hereby request that the Planning	Board
waive the requirements of item	193-10.G	of the Hudson Land Use Regu	lations
in reference to a plan presented b	y SFC Engineering		
	(name of surveyor and en	ngineer) dated 10/2/2024	for
property tax map(s) 198	and $lot(s)$ 147	in the Town of Hudson, NH.	

As the aforementioned applicant, I, herein, acknowledge that this waiver is requested in accordance with the provisions set forth in RSA 674:36, II (n), i.e., without the Planning Board granting said waiver, it would pose an unnecessary hardship upon me (the applicant), and the granting of this waiver would not be contrary to the spirit and intent of the Land Use Regulations.

Hardship reason(s) for granting this waiver (if additional space is needed please attach the appropriate documentation hereto):

The regulations allow for only one driveway per lot, where our redevelopment requires

two driveways.

Reason(s) for granting this waiver, relative to not being contrary to the spirit and intent of the Land Use Regulations: (if additional space is needed please attach the appropriate documentation hereto): The property has historically had two driveway curb cuts. We will utilize these two

existing curb cuts to provide a right-in/right-out driveway layout to minimize conflict at the difficult Lowell Road-County Road intersection.

Signed: Kihar

Applicant or Authorized Agent

Name of Subdivision/Site Plan: Inside Out Painting and	d Remodeling
Street Address: 100 Lowell Road	
I Daniel M. Flores, PE	hereby request that the Planning Board
waive the requirements of item 275-8.C(6)(b)	of the Hudson Land Use Regulations
in reference to a plan presented by SFC Engineering	
(name of surveyor and e	ngineer) dated <u>10/2/2024</u> for
property tax map(s) 198 and lot(s) 147	in the Town of Hudson, NH.

As the aforementioned applicant, I, herein, acknowledge that this waiver is requested in accordance with the provisions set forth in RSA 674:36, II (n), i.e., without the Planning Board granting said waiver, it would pose an unnecessary hardship upon me (the applicant), and the granting of this waiver would not be contrary to the spirit and intent of the Land Use Regulations.

Hardship reason(s) for granting this waiver (if additional space is needed please attach the appropriate documentation hereto): The regulations requires a loading space that is 60' long, but allows includes provision to allow a 35' long loading space when demonstrated that delivery is by a shorter truck. The site plan shows a 35' long loading space.

Reason(s) for granting this waiver, relative to not being contrary to the spirit and intent of the Land Use Regulations: (if additional space is needed please attach the appropriate documentation hereto): Inside Out Painting and Remodeling currently receives deliveries from box trucks where a 35' loading space is ample. This proposed site at 100 Lowell Road will not change their delivery practices. As such, continuing with a 35' loading space length at this new location is more than adequate for their operations.

Signed: Hinna) Applicant or Authorized Agent

Name of Subdiv	vision/Site Plan:	Inside Out Painting an	d Remodeling	
Street Address:	100 Lowell	Road		
I Daniel M	. Flores, PE		hereby request that the Planning	; Board
waive the requir	ements of item	276-11.1.B.(12)(c)	of the Hudson Land Use Reg	ulations
in reference to a	plan presented	by SFC Engineering		
	`	(name of surveyor and e	engineer) dated 10/2/2024	for
property tax ma	p(s) 198	and $lot(s)$ 147	in the Town of Hudson, NH.	

As the aforementioned applicant, I, herein, acknowledge that this waiver is requested in accordance with the provisions set forth in RSA 674:36, II (n), i.e., without the Planning Board granting said waiver, it would pose an unnecessary hardship upon me (the applicant), and the granting of this waiver would not be contrary to the spirit and intent of the Land Use Regulations.

Hardship reason(s) for granting this waiver (if additional space is needed please attach the appropriate documentation hereto): The regulations requires that where a commercial or industrial use or zoning district abuts a residential use or zoning district, there shall be a one-hundred-foot distance between the residential use or zoning district and any improved part of the nonresidential development.

Reason(s) for granting this waiver, relative to not being contrary to the spirit and intent of the Land Use Regulations: (if additional space is needed please attach the appropriate documentation hereto): The proposed site plan has the retaining wall and south parking spaces within 100' of the abutting residential dwelling at 104 Lowell Road (map 198 lot 148). However, the parking area is set approximately 15' below the grade of the house, as well as screened by vegetation. In addition, the owner of that abutting lot has expressed support for this development.

Signed: Applicant or Authorized Algent

SCHEDULE OF FEES

(Continued)

(For Town	Use)	
AMOUNT RECEIVED: \$	DATE RECEIVED:	-
RECEIPT NO.:	RECEIVED BY:	

NOTE: fees below apply only upon plan approval, not collected at time of application.

D. <u>RECORDING:</u>

The applicant shall be responsible for the recording of the approved plan, and all documents as required by an approval, at the Hillsborough County Registry of Deeds (HCRD), located at 19 Temple Street, Nashua, NH 03061. Additional fees associated with recording can be found at HCRD.

E. <u>COST ALLOCATION PROCEDURE AMOUNT CONTRIBUTION AND OTHER</u> <u>IMPACT FEE PAYMENTS:</u>

To be determined by the Planning Board at time of plan approval and shall be paid by the applicant at the time of submittal of the Certificate of Occupancy Permit requests.

*******The applicant shall be responsible for all fees incurred by the town for processing and review of the applicant's application, plan and related materials.***

TOWN OF HUDSON SITE PLAN REVIEW CHECKLIST

This checklist is intended to help the applicant and staff to ensure application completeness. Please refer to the regulations on the exact language of each requirement.

Key: Y=Yes P =Pending W=Waiver Request

<u>Relevant Regulations:</u> § 276-11.1 General Plan Requirements §§ 275-8 – 275-9 Site Plan Requirements

	$\underline{Y} = \underline{P} = \underline{W}$	<u>Notes</u>
1.	✓ □ - A list of the names and addresses of the owner(s) of	
	the property, the applicant(s), and all abutters as	
	indicated in the office of the Town Assessor records	
	not more than five (5) days prior to the day of filing [§ 276-11.1.A.]	
2	Sets of plans and copies as indicated on application.	
3.	Scale no smaller than 50 feet to the inch $(1" = 50")$ [§ 276-11.1.B.(2)]	
4.	Title block in the lower right-hand corner of the plan, containing: [§ 276-11.1.B.(3)]	
5.	Title, including the term "site plan" or "subdivision plan"	
6.	- The name for whom the plan was prepared	
7.	- Preparer of the plan	
8.	\Box - The scale(s) of the plan	
9.	- Date of the plan	
10.	. 🗹 🔲 🔲 - Appropriate revision block	
11.		
	corner of each sheet, with the required language and signature line [§ 276-11.1.B.(4) & § 289-27.A]	
12.	. Vert - Owner's printed name and address and signature [§ 276-11.1.B.(6)]	
13.	. Mame and address of all abutting property owners [§ 276-11.1.B.(7)]	
14.	→ A locus plan at one inch equals 1,000 feet (1" = 1,000') [§ 276-11.1.B.(8)]	
(C	ontinue next page)	

 15. Image: Boundary of the entire parcel held in single ownership with boundary dimensions and bearings [§ 276-11.1.B.(9)] 	29. N/A, no known highway projects in vicinity
16. - Error of closure shown and certified by a licensed land surveyor	
17. 🗹 🗌 - North point arrow	
 18.	
19. The location of all buildings within 50 feet of the tract [§ 276-11.1.B.(15)]	
20. The location of roadways, driveways, travel areas or parking areas within 200 feet of the tract, in accordance with § 276-11.1.B.(16)	
21. 21.	
22. Content - Proposed topography at two-foot contour intervals [§ 276-11.1.B.(18)]	
23. 27. A note identifying the Tax Map and Lot Number of the tract [§ 276-11.1.B.(19)]	
 24. ∑ □ - The location of all existing buildings (including size and height), driveways, sidewalks, parking spaces, loading area, open spaces, large trees, open drainage courses, signs, exterior lighting, service areas, easements landscaping and other pertinent items. [\$ 276-11.1.B.(20)] 	
25. C - The location of all proposed construction, buildings, structures, pavement, etc. [§ 276-11.1.B.(21)]	
26	
29	
(Continue next page)	

TOWN OF HUDSON SITE PLAN REVIEW CHECKLIST

This checklist is intended to help the applicant and staff to ensure application completeness. Please refer to the regulations on the exact language of each requirement.

Kev: Y=Yes *P* =*Pending* W=Waiver Request NA=Not Applicable (please explain) $\underbrace{\underline{Y} \quad \underline{P} \quad \underline{W} \quad \underline{NA}}_{30.} \underbrace{\overline{\bigvee} \quad \Box}_{\Box} \quad \Box$ Notes - The location of all building setback lines as 43. is not applicable due to required by Chapter 334, Zoning, and setback a business use being lines as required by § 276-11.1.B.(12). proposed in the business 31. 🔽 🗆 🗆 - The location size and character of all signs or a zone. note* stating "All signs are subject to approval by the Hudson Zoning Administrator prior to installation thereof." [§ 276-11.1.B.(13)] *The discrepancy on the note language is correct - reference to the Planning Board in the regulations is outdated. 32. - The location, detail and character of all exterior lighting or a note stating: "There will be no exterior lighting." [§ 276-11.1.B.(14)] 33. \checkmark \square \square \square - Required open space, including the calculation showing the requirement is met [§ 276-11.1.B.(24)] 34. 7 - Parking space calculation showing and a statement stating the required parking spaces are provided [§ 275-8.C.(2) & (3)] 35. **T - Required dimensions for parking space** [§ 275-8.C.(4)] 36. 7 - Required dimensions for aisle/access drive [§ 275-8.C.(5)] 37. Required off-street loading spaces [§ 275-8.C.(6)] 38. \checkmark \Box \Box \Box \Box - Required landscaping for the parking lot, including calculation shown the planting requirement is met [§ 275-8.C.(7)] 39. 🟹 incompatible uses [§ 275-8.C.(8)] 40. V - Handicap accessibility provided in accordance with the latest ADA Regulations [§ 275-8.C.(11)] 41. 7 - Stormwater Management Plan [§ 275-9.A] 42. Traffic Study, if required [§ 275-9.B] □ □ □ · Noise Study, if required [§ 275-9.C] 43. (Continue next page)

TOWN OF HUDSON SITE PLAN REVIEW CHECKLIST

This checklist is intended to help the applicant and staff to ensure application completeness. Please refer to the regulations on the exact language of each requirement.

Key: Y=Yes	P =Pending	W=Waiver Request	NA=Not Applic	able (please explain)
<u>Y</u> <u>P</u> <u>W</u>	<u>NA</u>			Notes
44. □ □ □ 45. ☑ □ □ 46. □ □ □	- Utility St - Copies of covenant documen	pact Study, if required [§ udy [§ 275-9.E] any proposed or existin s, deed restrictions or any t pertinent to the Site Pla f all applicable Town, sta	g easements, y other similar n [§ 275-9.F]	46 is not applicable due to there being no existing or proposed easements and there are no deed restrictions.
48.	federal aj Federal aj - Environn [§ 275-	oprovals or applications nental Impact Study, if re	[§ 275-9.G]	47 is not applicable since the project is located at a previously developed lot of record.
(End of checkli	st <i>)</i>			

rev. 02.06.24

October 1, 2024

Jay Minkarah, Interim Town Planner/NRPC Circuit Rider Town of Hudson 12 School Street Hudson, NH 03501

RE: 100 Lowell Road Owner Authorization

Mr. Minkarah,

SFC Engineering Partnership, Inc. is authorized to represent 100 Lowell Rd LLC throughout the local approval process for proposed development at 100 Lowell Road.

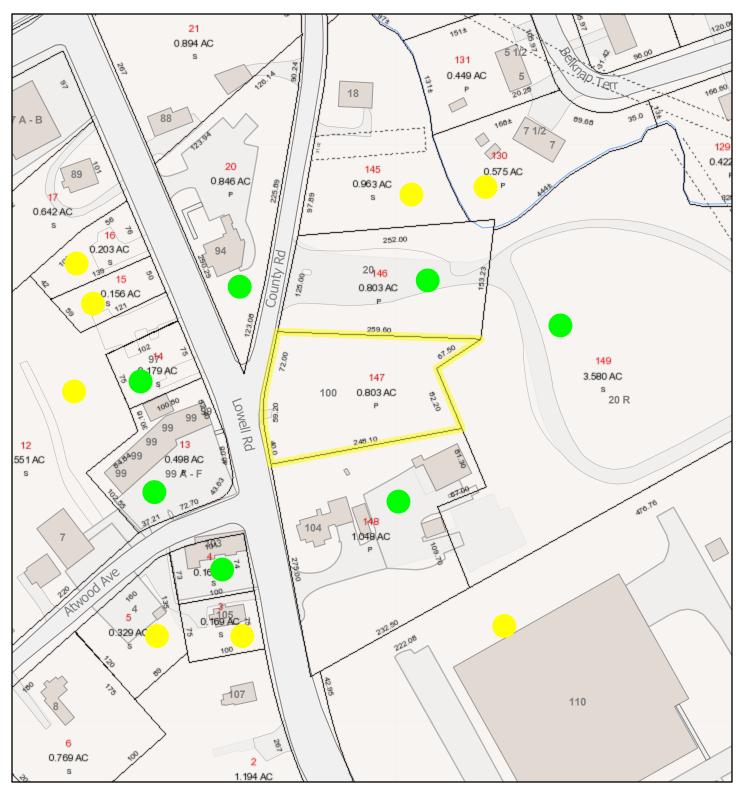
Sincerely,

100 Lowell Rd LLC

Abutters List

Inside Out Painting and Remodeling 100 Lowell Road Map 198 Lot 147-000

September 30, 2024


	MAP	LOT	<u>OWNER</u>
<u>OWNER &</u> <u>APPLICANT</u>	198	147-000	100 Lowell Rd LLC 122 Lowell Road, Suite 3 Hudson, NH 03051
<u>DIRECT</u> <u>ABUTTERS</u>	198	146-000	Town of Hudson 12 School Street Hudson, NH 03051
	198	148-000	Ronald F. Maynard 104 Lowell Road Hudson, NH 03051
	198	149-000	Town of Hudson 12 School Street Hudson, NH 03051
	198	013-CDX	Stratos Realty Trust Steve Tsoulakos, Trustee 2651 San Luis Road Holiday, FL 34691-3115
	198	020-000	Nicholas Katsoulis 88 Lowell Road Hudson NH 03051
	198	004-000	Dillon-James Properties LLC 195R Central Street Hudson, NH 03051

	198	014-000	Colbea Enterprises, LLC 695 George Washington Highway Lincoln, RI 02865
<u>INDIRECT</u> <u>ABUTTERS</u>	198	003-000	Anne L. Sojka Trust 11 Atwood Avenue Hudson, NH 03051
	198	005-000	Anne L. Sojka Trust 11 Atwood Avenue Hudson, NH 03051
	198	150-000	Teledyne Technologies Inc. 4736 Socialville Foster Road Mason, OH 45040
	198	012-000	Colbea Enterprises, LLC 695 George Washington Highway Lincoln, RI 02865
	198	015-000	Colbea Enterprises, LLC 695 George Washington Highway Lincoln, RI 02865
	198	016-000	Colbea Enterprises, LLC 695 George Washington Highway Lincoln, RI 02865
	198	130-CDX	Gauthier, Lisa M. 7 ½ Belknap TER. Hudson, NH 03051
	198	130-CDX	Donald L. Flores 7 Belknap Terrace Hudson, NH 03051
	198	145-000	Pamela J. Quigley 18 County Road Hudson, NH 03051

<u>ENGINEER</u>

SFC Engineering Partnership, Inc. 183 Rockingham Road, Unit 3 Windham, NH 03087

100 Lowell Rd

9/30/2024	1:2,000
NOTE: GREEN - DIRECT ABUTTERS YELLOW - INDIRECT ABUTTERS	0 0.01 0.03 0.05 mi

January 7, 2025

Jay Minkarah Acting Town Planner 12 School Street Hudson, NH 03051

RE: Resubmittal of Site Plan Material Inside Out Painting and Remodeling 100 Lowell Road (Tax Map 198, Lot 147)

Mr. Jay Minkarah,

This project was heard by the Planning Board at their November 13, 2024 public hearing, which generated comments to address. Third party review comments from Fuss & O'Neill were received dated October 23, 2024. Comments were also received from Hudson Fire Department dated October 4, 2024, Hudson Engineering dated October 7, 2024, and Hudson DPW dated October 24, 2024. This letter is meant to summarize how these comments have been addressed.

General Plan Updates.

1. The parking area has been expanded as discussed with the Board. We have included two areas of porous pavement to offset this additional pavement. Revisions to the plan set and drainage report have been made as necessary.

Planning Board comments.

- 1. The Planning Board requested that we include 3 additional waivers (for the 2 driveway curb cuts, the loading space size, and the 100' residential setback) to the two waivers previously included (parking quantity, and error of closure by a Licensed Land Surveyor). These are attached to this letter. All 5 waiver requests are now listed on the Site Development Plan (plan sheet 3).
- 2. The Traffic Engineer (VAI) has updated the Traffic Impact Study to reflect the final building footprint of 6,844 sf. They have also included the ITE graphs in the Trip-Generation Calculations section, as requested by a Board member. The conclusion remains unchanged with the new building area, finding that the "Project can be accommodated within the confines of the existing transportation infrastructure in a safe and efficient manner".
- 3. The parking spaces in front of the overhead doors have been removed.
- 4. Note #22 has been added to the Site Development Plan (plan sheet 3) stating that the development has been designed for a single tenant.
- 5. The new bioretention basin location provides 1' of separation from the bottom of the bioretention media to the observed test pit depth, therefore ensuring no season high water table within 1' of the bottom of the practice.
- 6. Note #5 has been added to the Lighting Plan (plan sheet 5) stating that site lighting will be off from 10 pm until 6 am.

0

0

0

Fuss & O'Neill Review comments.

These comments are addressed under separate response letter.

Hudson Fire Department comments.

1. Note #9 on the Fire Protection Plan (plan sheet 6) has been revised to reference the 2021 edition of the Internation Building Code.

Hudson Engineering comments.

- 1. The fire truck turning path shown on the Fire Protection Plan (plan sheet 6) has been corrected such that the wheel paths remain on the pavement.
- 2. A sewer manhole has been provided at the property line to allow for inspection.

Hudson DPW comments.

1. The Site Grading & Utilities Plan (plan sheet 4) includes additional labels to demonstrate that stormwater is either directed to the bioretention basin, or to one of the two infiltration trenches.

Sincerely, *SFC ENGINEERING PARTNERSHIP, INC.*

Daniel M. Flores, P.E.

Daniel M. Flores, P.E. Vice President - Civil Engineering

i,

Dubowik, Brooke

From:	Michaud, Jim
Sent:	Friday, January 24, 2025 7:54 AM
То:	Dubowik, Brooke
Subject:	RE: 100 Lowell Rd Resubmittal

Hi Brooke, Assessing has no further comments.

•

÷

Dubowik, Brooke

From: Sent:	Twardosky, Jason Thursday, January 23, 2025 4:10 PM
To:	Dubowik, Brooke; Dhima, Elvis; Gradert Benjamin; Hebert, David; Kirkland, Donald;
Subject:	McElhinney, Steven; Michaud, Jim; Sullivan, Christopher; Malley, Tim RE: 100 Lowell Rd Resubmittal

All set

τ.

Dubowik, Brooke

From:	Dhima, Elvis	
Sent:	Thursday, January 23, 2025 3:35 PM	
То:	Dubowik, Brooke; Gradert Benjamin; Hebert, David; Kirkland, Donald; McElhinney,	
	Steven; Michaud, Jim; Sullivan, Christopher; Malley, Tim; Twardosky, Jason	
Subject:	RE: 100 Lowell Rd Resubmittal	

Engineering Department comments have been addressed

No further comments

Е

Elvis Dhima, P.E. Town Engineer

12 School Street Hudson, NH 03051 Phone: (603) 886-6008

Dubowik, Brooke

From: Sent: To:

Subject:

Hebert, David Thursday, January 23, 2025 3:39 PM Dubowik, Brooke; Dhima, Elvis; Gradert Benjamin; Kirkland, Donald; McElhinney, Steven; Michaud, Jim; Sullivan, Christopher; Malley, Tim; Twardosky, Jason RE: 100 Lowell Rd Resubmittal

Fire comments have been addressed. No further comments

Dave Hebert Fire Marshal Hudson Fire Department Inspectional Services Division

Town of Hudson | 12 School Street | Hudson, NH 03051 603-886-6005 (Main) | 603-816-1271 (Direct)

- •

Dubowik, Brooke

From:	McElhinney, Steven	
Sent:	Monday, January 27, 2025 10:42 AM	
То:	Dubowik, Brooke	
Subject:	RE: Inside Out Painting Site Plan - First Review (20030249.243)	

No comments (there wasn't a sign off sheet correct?)!

Steve

Respectfully,

Captain Steven C. McElhinney Administrative Bureau Commander Hudson, NH Police Tel: (603) 816-2244

This e-mail communication (including any attachments) is covered by the Electronic Communications Privacy Act, 18 USC 2510 et seq. This communication is CONFIDENTIAL. The advice and work product contained herein are PRIVILEGED and intended only for disclosure to or use by the person(s) listed above. If you are neither the intended recipient(s), nor a person responsible for the delivery of this communication to the intended recipient(s), you are hereby notified that any retention, dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify me immediately by using the "reply" feature or by calling me at (603) 886-6011, and then immediately delete this message and all attachments from your computer.

÷.

Dubowik, Brooke

From:	Sullivan, Christopher	
Sent:	Thursday, January 23, 2025 3:54 PM	
То:	Dubowik, Brooke; Dhima, Elvis; Gradert Benjamin; Hebert, David; Kirkland, Donald;	
	McElhinney, Steven; Michaud, Jim; Malley, Tim; Twardosky, Jason	
Subject:	RE: Inside Out Painting Site Plan - First Review (20030249.243)	

Zoning is all set

÷.

MEMORANDUM

TO:	Mr. Daniel M. Flores, P.E. Project Manager/Lead Civil Engineer SFC Engineering Partnership, Inc. 183 Rockingham Road, Unit 3 East Windham, NH 03087	FROM:	Mr. Jeffrey S. Dirk, P.E.*, PTOE, FITE Managing Partner <i>and</i> Mr. Makenlove Marc Transportation Engineer Vanasse & Associates, Inc. 35 New England Business Center Drive Suite 140 Andover, MA 01810-1066 (978) 269-6830 jdirk@rdva.com *Professional Engineer in CT, MA, ME, NH, RI and VA
DATE:	October 1, 2024 <i>Updated November 25, 2024</i>	RE:	9998
SUBJECT:	Traffic Impact Study Proposed Commercial Building – 100 Hudson, New Hampshire	Lowell Ro	oad (NH Route 3A)

Vanasse & Associates, Inc. (VAI) has prepared an update to the October 1, 2024 Traffic Impact Study (TIS) That was prepared for the proposed construction of a commercial building to be located at 100 Lowell Road (NH Route 3A) in Hudson, New Hampshire (hereafter referred to as the "Project"). This update revises the trip-generation calculations and Build condition analyses to reflect an increase in the size of the proposed building from $4,500\pm$ square feet (sf) to 6,855 sf (an increase of $2,355\pm$ sf). In addition, motor vehicle crash data has been provided by the Hudson Police Department for the Lowell Road (NH Route 3A)/ County Road and has been incorporated into this updated study.

This study has been completed in accordance with the New Hampshire Department of Transportation (NHDOT) guidelines for the preparation of a TIS as defined in the Driveway Permit Policy, and evaluates the following specific areas as they relate to the Project: i) access requirements; ii) potential off-site improvements; and iii) safety considerations; and identifies and analyzes existing traffic conditions and future traffic conditions, both with and without the Project along Lowell Road (NH Route 3A) and County Road. Based on this assessment, we have concluded the following with respect to the Project:

- 1. Using trip-generation statistics published by the Institute of Transportation Engineer (ITE),¹ the Project is expected to generate approximately 68 vehicle trips on an average weekday (two-way volume over the operational day of the Project), with approximately 11 vehicle trips expected during the weekday morning peak-hour and 13 vehicle trips expected during the weekday evening peak-hour;
- 2. The Project will not have a significant impact (increase) on motorist delays or vehicle queuing over Existing or anticipated future conditions without the Project (No-Build conditions), with no (0) changes in level of service or vehicle queuing shown to occur. Independent of the Project, all

¹*Trip Generation*, 11th Edition; Institute of Transportation Engineers; Washington, DC; 2021.

movements from the County Road approach to NH Route 3A are currently operating over capacity (i.e., level-of-service (LOS) "F");

- 3. Under 2025 Opening Year Build and 2035 Build conditions, all movements exiting the Project site driveway to County Road were shown to operate at LOS A/B with negligible vehicle queuing. All movements along NH Route 3A and County Road approaching the Project site driveways were shown to operate at LOS A, also with negligible vehicle queuing;
- 4. Based on a review of motor vehicle crash data provided by the Hudson Police Department for the NH Route 3A/County Road intersection, the majority of the reported crashes involved distracted motorists or failure to yield, conditions that are not attributable to a specific roadway or intersection defect; and
- 5. With the regrading of the embankment along the Project site frontage on both NH Route 3A and County Road and the selective trimming/removal of trees and vegetation located within the sight triangle areas of the County Road driveway, the lines of sight at the Project site driveway intersections will meet or exceed the recommended minimum distances for the intersections to operate in a safe manner based on the appropriate approach speed.

In consideration of the above, we have concluded that the Project can be accommodated within the confines of the existing transportation infrastructure in a safe and efficient manner with implementation of the recommendations defined herein.

The following details our assessment of the Project.

PROJECT DESCRIPTION

As proposed, the Project will entail the construction of a $6,855\pm$ sf commercial building to be located at 100 Lowell Road in Hudson, New Hampshire, that will be designed for use by specialty trade contractors and will feature storage bays and associated office space. The Project site encompasses approximately $0.80\pm$ acres of land bounded by the Jette and Sousa baseball/softball fields and associated parking area and appurtenances to the north and east; NH Route 3A and a commercial property to the south; and NH Route3A and County Road to the west. The Project site currently contains previously disturbed areas and areas of open and wooded space. Figure 1 depicts the Project site location in relation to the existing roadway network.

Access to the Project site will be provided by way of two (2) driveways configured as follows: a one-way, right-turn, entrance only driveway that will intersect the east side of NH Route 3A on the northeast corner of the NH Route 3A/County Road intersection and a one-way, right-turn, exit only driveway that will intersect the east side of County Road approximately 110 feet north of NH Route 3A.

On-site parking will be provided for 11 vehicles, which is below the parking requirements for a similar use (Industrial) as specified in Section 275-8.1 C (2), *Parking Calculation*, of the Town of Hudson Zoning Ordinance.²

²For "Professional offices and business services", the Zoning Ordinance requires that 1.0 parking spaces be provided for every 300 square feet of gross leasable area, which would be 23 parking spaces in the case of the Project.

Traffic Impact Study - Proposed Commercial Building - Hudson, New Hampshire

Attachment "D"

STUDY METHODOLOGY

This study was prepared in consultation with the Town of Hudson and NHDOT; was performed in accordance with the NHDOT guidelines for the preparation of TISs as defined in the Driveway Permit Policy and the standards of the Traffic Engineering and Transportation Planning Professions for the preparation of such reports; and was conducted in three distinct stages.

The first stage of the study involved an assessment of existing conditions in the study area and included an inventory of roadway geometrics, pedestrian and bicycle facilities, and public transportation services; observations of traffic flow; and the collection of daily and peak-period traffic counts.

In the second stage of the study, future conditions on the transportation system were projected and analyzed. Specific travel demand forecasts for the Project were assessed along with future demands on the transportation system that are expected due to growth independent of the Project. In accordance with NHDOT guidelines for the preparation of TISs, four future conditions were evaluated: 1) 2025 No-Build conditions *without* the Project; 2) 2025 Opening-Year Build conditions *with* the Project; 3) 2035 No-Build conditions *without* the Project; and 4) 2035 Build conditions (ten-year projection from opening-year) *with* the Project. The analyses conducted in stage two of the study identify existing or projected future roadway capacity and traffic safety issues.

The third stage of the study presents and evaluates measures to address roadway and intersection capacity issues and safety concerns, if any, identified in stages one and two of the study.

EXISTING CONDITIONS

A comprehensive field inventory of existing conditions within the study area was conducted in July 2024. The field investigation consisted of an inventory of existing roadway geometrics; pedestrian and bicycle facilities; public transportation services; traffic volumes; and operating characteristics; as well as posted speed limits and land use information within the study area. The study area that was assessed for the Project consisted of NH Route 3A and County Road, and the intersection of NH Route 3A at County Road. The following describes the study area roadways and intersection.

Roadways

NH Route 3A

NH Route 3A in the vicinity of the Project site is a three-lane (one lane in each direction with a center leftturn lane), Tier 5, Class 4, principal arterial roadway that is under Town jurisdiction and traverses the study area in a general north-south direction. Within the study area, NH Route 3A provides two 12-foot-wide travel lanes that are separated by a 12-foot wide center turn lane that accommodates left-turn movements in both directions with 4- to 6-foot wide marked shoulders. The posted speed limit is 30 miles per hour (mph) in the vicinity of the Project site. Sidewalks are not provided within the study area. Illumination is provided by way of street lights mounted on wood poles. Land use along NH Route 3A in the vicinity of the Project site consists of residential and commercial properties and areas of open and wooded space.

County Road

County Road in the vicinity of the Project site is a two-lane, Tier 5, Class 5, minor arterial roadway under Town jurisdiction that traverses the study area in a general northeast-southwest direction intersecting NH Route 3A adjacent to and approximately 1,100 feet north of the Project site. Within the study area,

County Road provides two 11-foot-wide travel lanes separated by a double-yellow centerline with no marked shoulders. A posted speed limit is not provided and, as such, the statutory speed limit pursuant to RSA 265:60 is 30 mph in a business district.³ Sidewalks and illumination are not provided within the study area. Land use along County Road in the vicinity of the Project site consists of residential and commercial properties, Jette Field and Sousa Field, and areas of open and wooded space.

Intersection

Table 1 summarizes existing lane use, traffic control, and pedestrian and bicycle accommodations at the intersection of NH Route 3A at County Road as observed in July 2024.

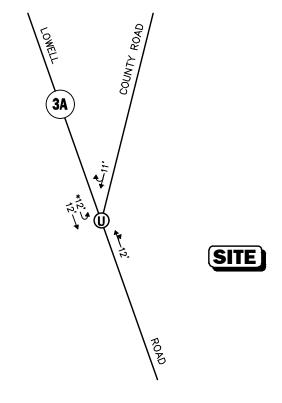
Table 1STUDY AREA INTERSECTION DESCRIPTION

Intersection	Traffic Control Type ^a	No. of Travel Lanes Provided	Shoulder Provided? (Yes/No/Width)	Pedestrian Accommodations? (Yes/No/Description)	Bicycle Accommodations? (Yes/No/Description)
NH Rte. 3A/ County Rd.	S	1 general-purpose lane provided on all approaches, with a center turn lane that accommodates left-turn maneuvers provided along NH Rte. 3A	Yes; 4 to 6 feet on NH Rte. 3A and 1 to 2 feet on County Rd.	No	Yes; shared traveled- way provided on NH Rte. 3A ^b

^aS = stop signal control.

^bCombined shoulder and travel lane width equal to or exceeding 14 feet.

Existing Traffic Volumes


In order to determine existing traffic-volume demands and flow patterns within the study area, automatic traffic recorder (ATR) counts, turning movement counts (TMCs), and vehicle classification counts were completed in July 2024. The ATR counts were conducted on July 23rd through 24th, 2024 (Tuesday through Wednesday, inclusive), on NH Route 3A south of Atwood Avenue in order to record weekday daily traffic conditions over an extended period, with weekday morning (7:00 to 9:00 AM) and evening (3:00 to 6:00 PM) peak-period TMCs performed at the study area intersection on Wednesday, July 24, 2024. These time periods were selected for analysis purposes as they are representative of the peak-traffic-volume hours for both the Project and the adjacent roadway network.

³RSA 265:60 defines the "reasonable and prudent standard" as follows: "No person shall drive a vehicle on a way at a speed greater than is reasonable and prudent under the conditions and having regard to the actual and potential hazards then existing. In every event speed shall be so controlled as may be necessary to avoid colliding with any person, vehicle, or other conveyance on or entering the way in compliance with the legal requirements and the duty of all persons to use due care."

Legend:

- **(U)** Unsignalized Intersection
- xx' \Rightarrow Lane Use and Travel Lane Width
- *xx' -> Center Left-Turn Lane

Figure 2

Existing Intersection Lane Use, Travel Lane Width, and Pedestrian Facilities

Attachment "D"

Traffic Volume Adjustments

In order to evaluate the potential for seasonal fluctuation of traffic volumes within the study area, 2019 peak-hour and average daily traffic count data were reviewed for NHDOT Continuous Count Station No. 62315281, which is located on the Frederick E. Everett Turnpike south of the Canal Bridge Exit 5-6. Based on a review of this data, it was determined that traffic volumes for the month of July are approximately 2.0 percent below peak-month (August) conditions. As such, the July traffic volumes were adjusted upward by 2.0 percent to be representative of peak-month conditions in accordance with NHDOT standards.

In order to account for the impact on the traffic volume and trip patterns resulting from the COVID-19 pandemic, traffic-volume data collected at NHDOT Continuous Count No. 62315281 was reviewed. Traffic-volume data for July 2024 was compared to data collected at the same location in July 2019. Based on this pre- and post-COVID-19 comparison, it was found that July 2024 average daily and peak-hour traffic volumes are between 9.1 and 14.8 percent *below* conditions that existed prior to the COVID-19 pandemic. As such, the seasonally adjusted July 2024 traffic volumes were further adjusted upward by the following percentages:

- Average Daily Traffic Volumes: -9.1%
- Weekday Morning Peak-Hour Traffic Volumes: -14.8%
- Weekday Evening Peak-Hour Traffic Volumes: -9.6%

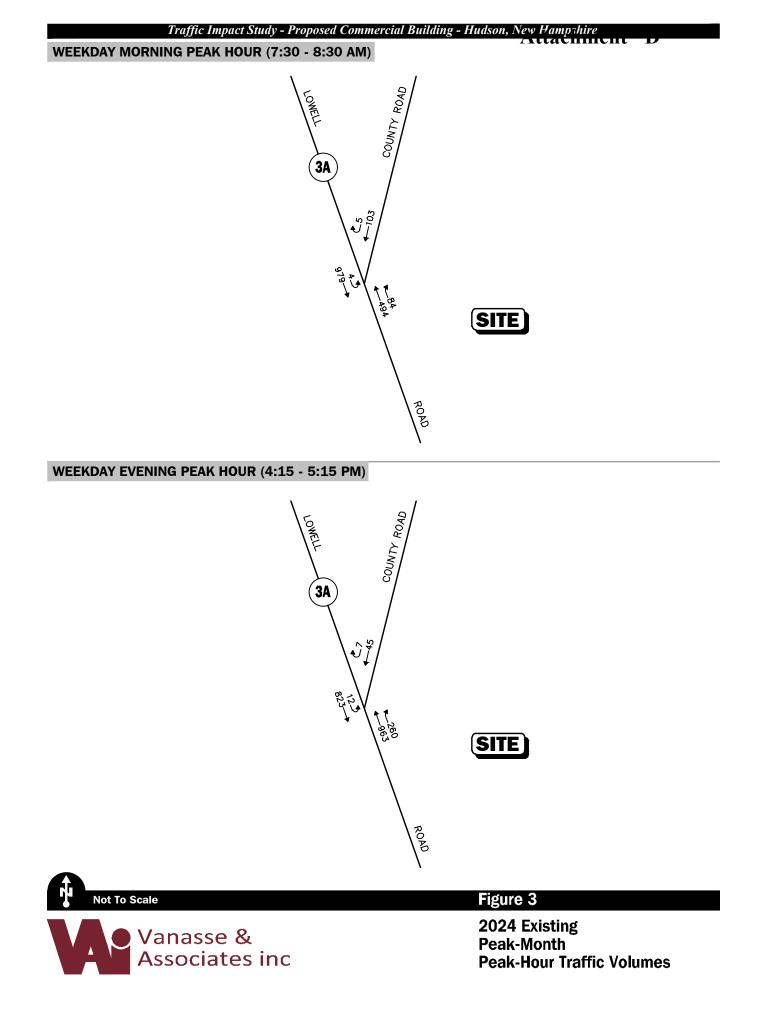
The 2024 Existing peak-month traffic volumes are summarized in Table 2, with the weekday morning and evening peak-month, peak-hour traffic volumes graphically depicted on Figure 3. Note that the peak-hour traffic volumes that are presented in Table 2 were obtained from the aforementioned figure.

Location/Peak Hour	AWT ^a	VPH ^b	K Factor ^c	Directional Distribution ^e
NH Route 3A, south of Atwood Avenue: Weekday Morning (7:30 – 8:30 AM)	23,195	 1,663	 7.2	 65.2% SB
Weekday Evening (4:15 – 5:15 PM)		2,098	9.0	58.5% NB

Table 22024 EXISTING PEAK-MONTH TRAFFIC VOLUMES

^aAverage weekday traffic in vehicles per day.

^bVehicles per hour.


^cPercent of daily traffic occurring during the peak hour.

^dPercent traveling in peak direction.

NB = northbound, SB = southbound

As can be seen in Table 2, NH Route 3A south of Atwood Avenue was found to accommodate approximately 23,195 vehicles on an average weekday (two-way, 24-hour volume) under peak-month conditions, with approximately 1,663 vehicles per hour (vph) during the weekday morning peak-hour and 2,098 vph during the weekday evening peak-hour.

Spot Speed Measurements

Vehicle travel speed measurements were performed on NH Route 3A in the vicinity of the Project site in conjunction with the ATR counts, the results of which are summarized in Table 3.

	NH Ro	oute 3A
	Northbound	Southbound
Mean Travel Speed (mph)	34	33
85 th Percentile Speed (mph)	39	38
Posted Speed Limit (mph)	30	30

Table 3VEHICLE TRAVEL SPEED MEASUREMENTS

mph = miles per hour.

As can be seen in Table 3, the mean vehicle travel speed along NH Route 3A in the vicinity of the Project site was found to be 34 mph in the northbound direction and 33 mph southbound. The measured 85th percentile vehicle travel speed, or the speed at which 85 percent of the observed vehicles traveled at or below, was found to be 39 mph northbound and 38 mph southbound, which is 8 to 9 mph above the posted speed limit (30 mph) in the vicinity of the Project site. The 85th percentile speed is used as the basis of engineering design and in the evaluation of sight distances and is often used in establishing posted speed limits.

Pedestrian and Bicycle Facilities

A comprehensive field inventory of pedestrian and bicycle facilities within the study area was undertaken in July 2024. The field inventory consisted of a review of the location of sidewalks and pedestrian crossing locations along the study roadways, as well as the location of existing and planned future bicycle facilities. Sidewalks, marked crosswalks and formal bicycle facilities are not provided within the study area; however, NH Route 3A provides sufficient width to accommodate bicycle travel in a shared-traveled-way configuration.⁴

Public Transportation

Regularly scheduled public transportation services are not provided within the study area; however, the Nashua Transit System (NTS) provides the Hudson Demand Response service for residents of Hudson. The service is application-based and provides door-to-door transportation within the town and the city of Nashua. Trips are reserved on a limited space available basis and priority is given to persons with disabilities and senior citizens. Information pertaining to this service is attached.

⁴A minimum combined travel lane and paved shoulder width of 14 feet is required to support bicycle travel in a shared-traveledway condition.

Motor Vehicle Crash Data

Motor vehicle crash data for the NH Route 3A/County Road intersection was provided by the Hudson Police Department for the period January 1, 2019 through August 1, 2024 in order to examine motor vehicle crash trends occurring at the subject intersection and in the vicinity of the Project site. The data is summarized in Table 4.

	NH Route 3A/County Road
Traffic Control Type ^b	U
Year:	
2019	5
2020	6
2021	3
2022	7
2023	7 3
2024 (through 8/1)	4
Total	$\frac{4}{28}$
Average	5.0
Lighting:	
Daylight	24
Dawn/Dusk	0
Dark (Road Lit)	4
Dark (Road Unlit)	0
Total	$\frac{0}{28}$
Day of Week:	
Monday-Friday	26
Saturday	0
Sunday	_2
Total	$\frac{2}{28}$
Severity:	
Property Damage Only	22
Non-fatal Injury	6
Fatalities	0
Not Reported	_0
Total	28

Table 4
MOTOR VEHICLE CRASH DATA SUMMARY ^a

^aSource: Hudson Police Department, January 1, 2019, through August 1, 2024.

^bTraffic Control Type: U = unsignalized.

As can be seen in Table 4, the NH Route 3A/County Road intersection was reported to have experienced a total of 28 reported motor vehicle crashes between January 1, 2019 and August 1, 2024, or an average of approximately 5.0 crashes per year. The majority of the reported crashes occurred on a weekday, during daylight and resulted in property damage only. A review of the findings of the crash investigation indicates that the primary contributing factors were distracted driving and failure to yield, neither of which are attributable to a specific roadway or intersection defect.

FUTURE CONDITIONS

Traffic volumes in the study area were projected to the years 2025 and 2035, which reflects the anticipated opening-year of the Project and a ten-year planning horizon from opening-year, respectively, consistent with NHDOT TIS guidelines. The future condition traffic-volume projections incorporate identified specific development projects by others, as well as general background traffic growth as a result of development external to the study area and presently unforeseen projects. Anticipated Project-generated traffic volumes superimposed upon the 2025 and 2035 No-Build traffic volumes reflect the Build conditions with the Project.

Future Traffic Growth

Future traffic growth is a function of the expected land development in the immediate area and the surrounding region. Several methods can be used to estimate this growth. A procedure frequently employed estimates an annual percentage increase in traffic growth and applies that percentage to all traffic volumes under study. The drawback to such a procedure is that some turning volumes may actually grow at either a higher or a lower rate at particular intersections.

An alternative procedure identifies the location and type of planned development, estimates the traffic to be generated, and assigns it to the area roadway network. This procedure produces a more realistic estimate of growth for local traffic; however, potential population growth and development external to the study area would not be accounted for in the resulting traffic projections.

To provide a conservative analysis framework, both procedures were used, the salient components of which are described below.

Specific Development by Others

The Town of Hudson Planning Department was contacted in order to determine if there were any projects planned within the Town that would have an impact on future traffic volumes within the study area. Based on this consultation, the following projects were identified for review in conjunction with this assessment:

- Proposed Commercial Development, NH Route 3A, Hudson, New Hampshire. This project entails the construction of a commercial development to be located on the southeast corner of the intersection of NH Route 3A at Central Street and north of the Project site. The project will consist of a 10-vehicle fueling position gasoline station and a 4,560 sf convenience store with a drivethrough coffee shop. The majority of the trips associated with this project will consist of pass-by trips (i.e., existing traffic), with the new trips that would occur within the study area of this assessment expected to be reflected in the general background traffic growth rate (discussion follows).
- Proposed Commercial Development, NH Route 3A, Hudson, New Hampshire. This project entails the construction of a commercial development to be located at 91-97 Lowell Road and west of the of the Project site. Formal plans for this project have not been submitted to the Planning Board at this time and, as such, the traffic associated with this Project were not included in this study.

No other developments were identified at this time that are expected to result in an increase in traffic within the study area beyond the general background traffic growth rate.

General Background Traffic Growth

Traffic-volume data compiled by NHDOT from count station No. 62315281 was reviewed in order to determine general traffic growth trends in the area. This data indicates that traffic volumes have fluctuated over the 10-year period between 2009 and 2019, with the average traffic growth rate found to be approximately 0.79 percent. In order to provide a prudent planning condition from which to assess the potential impact of the Project on the transportation infrastructure, a slightly higher 1.0 percent per year compounded annual background traffic growth rate was used in order to account for future traffic growth and presently unforeseen development within the study area.

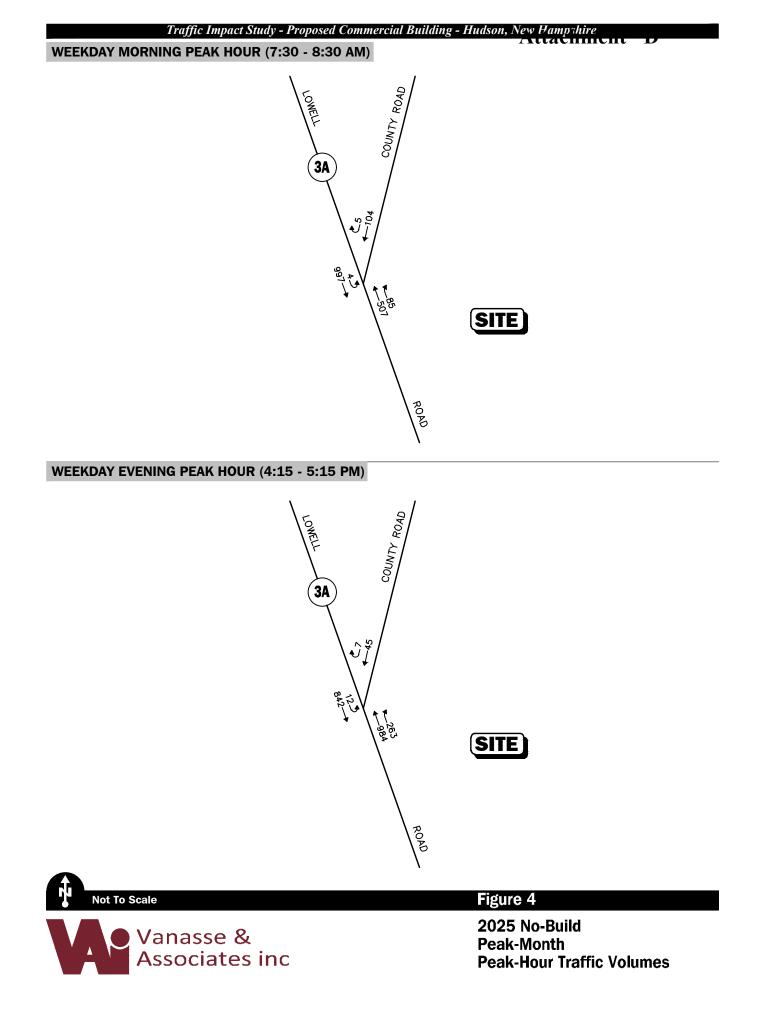
Roadway Improvement Projects

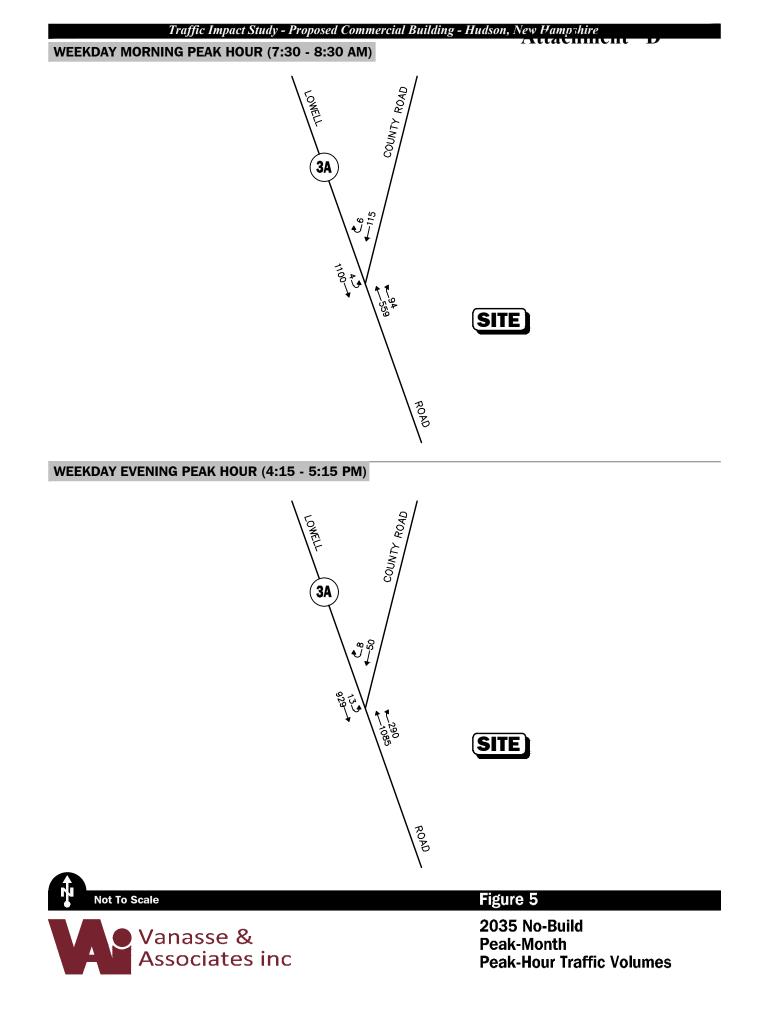
The Town of Hudson and NHDOT were contacted in order to determine if there were any planned roadway improvement projects expected to be completed within the study area. Based on these discussions, the following roadway improvement project was identified:

Belknap Road Extension Project. This project has been submitted to NHDOT for inclusion in the Ten-Year Transportation Improvement Plan and would include the extension of Belknap Road to intersect NH Route 3A at Birch Street. This project was first assessed in 2019, with further discussions occurring at meetings of the Highway Safety Committee and the Board of Selectmen due to the high rate of motor vehicle crashes (14 crashes in four years) occurring at the southern intersection of NH Route 3A at County Road adjacent to the Project site. At this time, design plans for these improvements are not currently available and, as such, the improvements are not reflected in this assessment.

No other roadway improvement projects aside from routine maintenance activities were identified to be planned within the study area at this time.

No-Build Traffic Volumes


The 2025 and 2035 No-Build peak-month, peak-hour traffic volumes were developed by applying the 1.0 percent per year compounded annual background traffic growth rate to the 2024 Existing peak-month, peak-hour traffic volumes. The resulting 2025 No-Build weekday morning and evening peak-month, peak-hour traffic volumes are shown on Figure 4, with the corresponding 2035 No-Build peak-month, peak-hour traffic volumes shown on Figure 5.


PROJECT-GENERATED TRAFFIC

As proposed, the Project will entail the construction of a $6,855\pm$ sf commercial building that will be designed for use by specialty trade contractors. In order to develop the traffic characteristics of the Project, trip-generation statistics published by the ITE⁵ for a similar land use as that proposed were used. ITE Land Use Code (LUC) 180, *Specialty Trade Contractor*, was used to develop the anticipated traffic characteristics of the Project, the results of which are summarized in Table 5.

⁵Institute of Transportation Engineers, op. cit. 1.

Table 5TRIP GENERATION SUMMARY

	Vehicle Trips ^a					
Time Period	Entering	Exiting	Total			
Average Weekday:	34	34	68			
Weekday Morning Peak-Hour:	8	3	11			
Weekday Evening Peak-Hour:	4	9	13			

^aBased on ITE LUC 180, Specialty Trade Contractor; 6,855 sf.

Project-Generated Traffic-Volume Summary

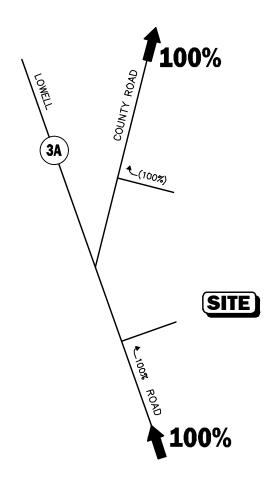
As can be seen in Table 5, the Project is predicted to generate approximately 68 vehicle trips on an average weekday (two-way volume over the operational day of the Project, or 34 vehicles entering and 34 exiting) and approximately 11 vehicle trips (8 vehicles entering and 3 exiting) expected during the weekday morning peak-hour and 13 vehicle trips (4 vehicles entering and 9 exiting) expected during the weekday evening peak-hour.

Trip Distribution and Assignment

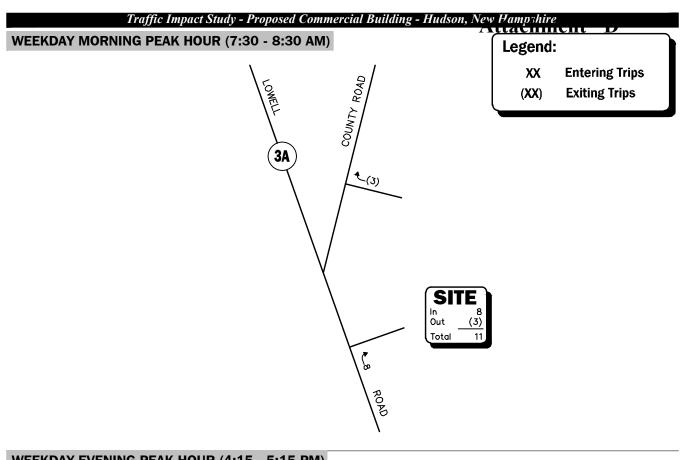
The directional distribution of generated trips to and from the Project site was determined based on a review of existing traffic patterns at the NH Route 3A/County Road intersection and the location of the Project site in relation to the regional roadway network. The general trip distribution for the Project is graphically depicted on Figure 6, with the additional traffic expected to be generated by the Project assigned onto the study area roadway network as shown on Figure 7.

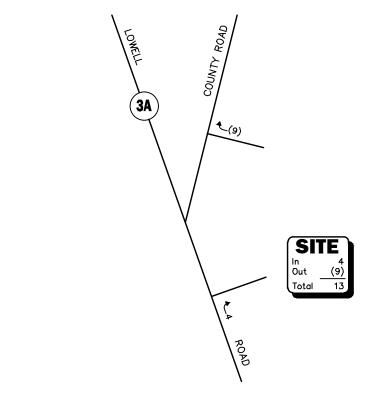
Build Traffic Volumes

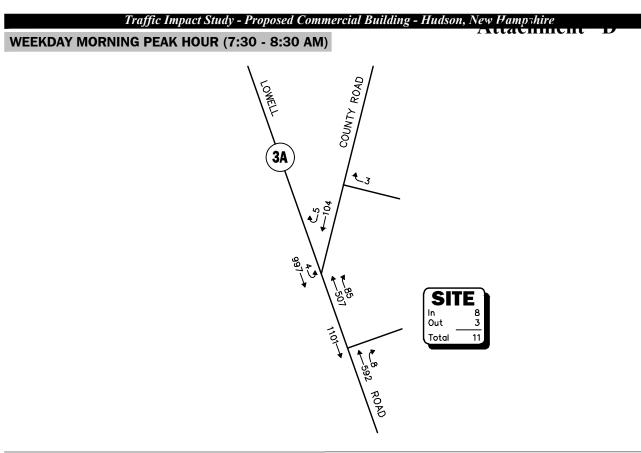
The 2025 Opening-Year Build and 2035 Build condition traffic volumes were developed by adding the peak-hour Project-generated traffic to the corresponding 2025 and 2035 No-Build peak-month, peak-hour traffic volumes. The resulting 2025 Opening-Year Build condition weekday morning and evening peak-hour traffic volumes are graphically depicted on Figure 8, with the corresponding 2035 Build condition peak-month, peak-hour traffic volumes depicted on Figure 9.


TRAFFIC OPERATIONS ANALYSIS

In order to assess the potential impact of the Project on the roadway network, a detailed traffic operations analysis (motorist delays, vehicle queuing, and level of service) was performed at the NH Route 3A/ County Road intersection. Capacity analyses provide an indication of how well transportation facilities serve the traffic demands placed upon them, with vehicle queue analyses providing a secondary measure of the operational characteristics of an intersection or section of roadway under study.


In brief, six levels of service are defined for each type of facility. They are given letter designations ranging from A to F, with LOS "A" representing the best operating conditions and LOS "F" representing congested or constrained operations. An LOS of "E" is representative of a transportation facility that is operating at its design capacity with an LOS of "D" is generally defined as the limit of "acceptable" traffic operations. Since the level of service of a traffic facility is a function of the flows placed upon it, such a facility may


Traffic Impact Study - Proposed Commercial Building - Hudson, New	, Hampshire	
1	Legend:	
	ХХ	Entering Trips
	(XX)	Exiting Trips


WEEKDAY EVENING PEAK HOUR (4:15 - 5:15 PM)

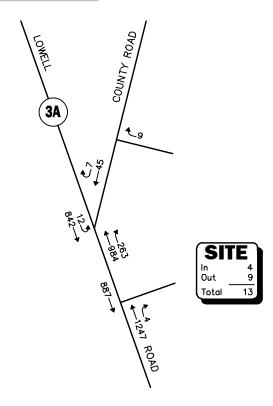
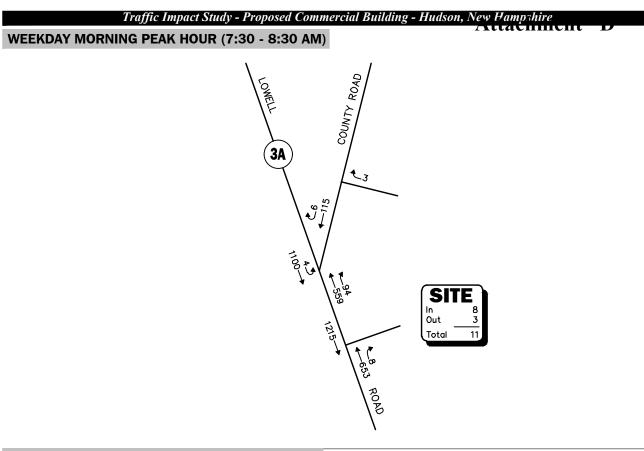


Figure 7

Project-Generated Peak-Month Peak-Hour Traffic Volumes


WEEKDAY EVENING PEAK HOUR (4:15 - 5:15 PM)

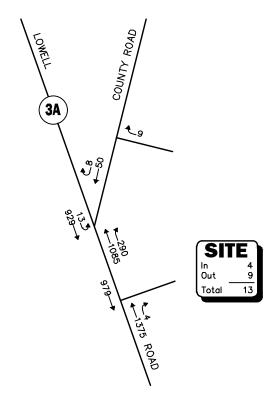


Figure 8

2025 Opening-Year Build Peak-Month Peak-Hour Traffic Volumes

WEEKDAY EVENING PEAK HOUR (4:15 - 5:15 PM)

Figure 9

2035 Build Peak-Month Peak-Hour Traffic Volumes operate at a wide range of levels of service depending on the time of day, day of week, or period of the year. The Synchro® 11 intersection capacity analysis software, which is based on the analysis methodologies and procedures presented in the 2000 *Highway Capacity Manual* (HCM),⁶ was used to complete the level-of-service and vehicle queue analyses for the signalized study area intersection.

Analysis Results

Level-of-service and vehicle queue analyses were conducted for 2024 Existing, 2025 No-Build, 2025 Opening-Year Build, 2035 No-Build and 2035 Build conditions for the study area intersection and the Project site driveways. The results of the intersection capacity and vehicle queue analyses are summarized in Table 6, with the detailed analysis results presented in the Attachment.

The following is a summary of the level-of-service and vehicle queue analyses for the intersections within the study area. For context, we note that an LOS of "D" or better is generally defined as "acceptable" operating conditions.

NH Route 3A at County Road

Under 2025 Opening-Year and 2035 Build peak-month conditions, no changes in level of service or vehicle queuing were shown to occur over No-Build conditions as a result of the addition of Project-related traffic. Independent of the Project, all movements from County Road are currently operating over capacity (i.e., LOS "F") during both peak hours with vehicle queues of up to 11 vehicles.

County Road at the Project Site Exit Driveway

Under 2025 Opening-Year Build peak-month conditions, all movements exiting the exit-only Project site driveway to County Road (restricted to right-turn movements only) were shown to operate at LOS A during both the weekday morning and evening peak hours with negligible vehicle queuing predicted. All movements along County Road approaching the Project site driveway were shown to operate at LOS A, also with negligible vehicle queuing predicted.

Under 2035 Build peak-month conditions, all movements exiting the exit-only Project site driveway to County Road were shown to operate at LOS A during the weekday morning peak-hour and at LOS B during the weekday evening peak-hour with negligible vehicle queuing predicted. All movements along County Road approaching the Project site driveway were shown to continue to operate at LOS A with negligible vehicle queuing predicted.

NH Route 3A at the Project Site Entrance Driveway

All movements at the entrance only Project site driveway intersection with NH Route 3A were shown to operate at LOS A under 2025 Opening-Year and 2035 Build conditions with negligible vehicle queuing predicted.

⁶Highway Capacity Manual; Transportation Research Board; Washington, DC; 2000.

Table 6 UNSIGNALIZED INTERSECTION LEVEL-OF-SERVICE AND VEHICLE QUEUE SUMMARY

		2024 Ez	kisting			2025 No	o Build		20	25 Opening	g-Year Bui	ild		2035 No	o-Build			2035	Build	
Unsignalized Intersection/Peak Hour/Movement	Demand ^a	Delay ^b	LOS ^c	Queue ^d 95 th	Demand	Delay	LOS	Queue 95 th	Demand	Delay	LOS	Queue 95 th	Demand	Delay	LOS	Queue 95 th	Demand	Delay	LOS	Queue 95 th
NH Route 3A at County Road																				
Weekday Morning:																				
County Road WB LT/RT	108	>50.0	F	7	109	>50.0	F	8	109	>50.0	F	8	121	>50.0	F	11	121	>50.0	F	11
NH Route 3A NB TH/RT	578	0.0	А	0	592	0.0	А	0	592	0.0	А	0	653	0.0	А	0	653	0.0	А	0
NH Route 3A SB LT	979	0.0	А	0	997	0.0	А	0	997	0.0	А	0	1,100	0.0	А	0	1,100	0.0	А	0
NH Route 3A SB TH	4	8.7	A	Ő	4	8.8	A	Õ	4	8.8	A	Ő	4	9.0	A	Õ	4	9.0	A	Õ
Weekday Evening:																				
County Road WB LT/RT	52	>50.0	F	4	52	>50.0	F	4	52	>50.0	F	4	58	>50.0	F	6	58	>50.0	F	6
NH Route 3A NB TH/RT	1,223	0.0	A	0	1,247	0.0	Ā	0	1,247	0.0	A	0	1,375	0.0	A	Õ	1,375	0.0	A	0
NH Route 3A SB LT	823	0.2	A	Ő	842	0.2	A	Ő	842	0.2	A	ŏ	929	0.2	A	ŏ	929	0.2	A	Ŏ
NH Route 3A SB TH	12	11.8	В	0.1	12	12.0	В	0	12	12.0	В	0	13	12.9	В	0	13	12.9	В	0
County Road at the Project Site Exit Driveway																				
Weekday Morning:																				
County Road EB TH									89	0.0	А	0					98	0.0	А	0
County Road WB TH									109	0.0	A	0					121	0.0	A	0
Project Site Driveway NB RT									3	8.8	A	ŏ					3	8.8	A	Ő
Weekday Evening:									-	0.0		-					-	0.0		÷
County Road EB TH									275	0.0	А	0					304	0.0	А	0
County Road WB TH									52	0.0	A	Ő					58	0.0	A	ů 0
Project Site Driveway NB RT									9	8.6	A	0					9	10.1	В	0
Lowell Road at the Project Site Entrance Driveway																				
Weekdav Morning:																				
Lowell Road NB TH/RT									600	0.0	А	0					661	0.0	А	0
Lowell Road SB TH									1,101	0.0	A	Ő					1,215	0.0	A	Ő
Weekday Evening:									-,	0.0		v					1,210	0.0		Ŭ
Lowell Road EB TH/RT									1,251	0.0	А	0					1,379	0.0	А	0
Lowell Road WB TH									887	0.0	A	0					979	0.0	A	0

^aDemand in vehicles per hour. ^bAverage control delay per vehicle (in seconds). ^cLevel of service. ^dQueue length in vehicles, based on 25 linear feet per vehicle (including clearances). NB = northbound; SB = southbound; EB = eastbound; WB = westbound; LT = left-turning movements; TH = through movements; RT = right-turning movements.

Attachment "D"

SIGHT DISTANCE MEASUREMENTS

Sight distance measurements were performed at the Project site driveway intersections with County Road in accordance with the American Association of State Highway and Transportation Officials (AASHTO)⁷ requirements. Both stopping sight distance (SSD) and intersection sight distance (ISD) measurements were performed. In brief, SSD is the distance required by a vehicle traveling at the design speed of a roadway, on wet pavement, to stop prior to striking an object in its travel path. ISD or corner sight distance (CSD) is the sight distance required by a driver entering or crossing an intersecting roadway to perceive an oncoming vehicle and safely complete a turning or crossing maneuver with oncoming traffic. In accordance with AASHTO standards, if the measured ISD is at least equal to the required SSD value for the appropriate design speed, the intersection can operate in a safe manner. Table 7 presents the measured SSD and ISD at the subject intersections.

Table 7SIGHT DISTANCE MEASUREMENTS*

		Feet	
Intersection/Sight Distance Measurement	Required Minimum (SSD)	Desirable (ISD) ^b	Measured
NH Route 3A at the Project Site Driveway Stopping Sight Distance:			
NH Route 3A approaching from the north	305		500+
NH Route 3A approaching from the south	305		456
County Road at the Project Site Driveway			
Stopping Sight Distance:			
County Road approaching from the northeast	200		467
County Road approaching from the southeast	200		238°
Intersection Sight Distance:			
Looking to the southeast from the driveway	200	290	228°

^aRecommended minimum values obtained from *A Policy on Geometric Design of Highways and Streets*, 7th Edition; American Association of State Highway and Transportation Officials (AASHTO); 2018; and based on a 40 mph approach speed along NH Route 3A and a 30 mph approach speed on County Road.

^bValues shown are the intersection sight distance for a vehicle turning right exiting a roadway under STOP control such that motorists approaching the intersection on the major street should not need to adjust their travel speed to less than 70 percent of their initial approach speed.

^cAvailable sight distance with the regrading of the embankment (slope) along the Project site frontage on both NH Route 3A and County Road and the selective trimming/removal of trees and vegetation located within the sight triangle areas of the Project site driveway.

As can be seen in Table 7, with the regrading of the embankment/slope along the Project site frontage on both NH Route 3A and County Road and the selective trimming/removal of trees and vegetation located within the sight triangle areas of the County Road Project site driveway, the available lines of sight at the Project site driveway intersections will meet or exceed the recommended minimum sight distances to function in a safe manner (SSD) based on the appropriate approach speeds.

⁷A Policy on Geometric Design of Highway and Streets, 7th Edition; American Association of State Highway and Transportation Officials (AASHTO); Washington D.C.; 2018.

Attachment "D"

SUMMARY

VAI has completed a detailed assessment of the potential impacts on the transportation infrastructure associated with the proposed construction of a commercial building to be located at 100 Lowell Road in Hudson, New Hampshire. This study has been completed in accordance with the NHDOT guidelines for the preparation of a TIS as defined in the Driveway Permit Policy and has evaluated the following specific areas as they relate to the Project: i) access requirements; ii) potential off-site improvements; and iii) safety considerations; under existing and future conditions, both with and without the Project. Based on this assessment, we have concluded the following with respect to the Project:

- 1. Using trip-generation statistics published by the ITE,⁸ the Project is expected to generate approximately 68 vehicle trips on an average weekday (two-way volume over the operational day of the Project), with approximately 11 vehicle trips expected during the weekday morning peak-hour and 13 vehicle trips expected during the weekday evening peak-hour;
- 2. The Project will not have a significant impact (increase) on motorist delays or vehicle queuing over Existing or anticipated future conditions without the Project (No-Build conditions), with no (0) changes in level of service or vehicle queuing shown to occur. Independent of the Project, all movements from the County Road approach to NH Route 3A are currently operating over capacity (i.e., LOS "F");
- 3. Under 2025 Opening Year Build and 2035 Build conditions, all movements exiting the Project site driveway to County Road were shown to operate at LOS A/B with negligible vehicle queuing. All movements along NH Route 3A and County Road approaching the Project site driveways were shown to operate at LOS A, also with negligible vehicle queuing;
- 4. Based on a review of motor vehicle crash data provided by the Hudson Police Department for the NH Route 3A/County Road intersection, the majority of the reported crashes involved distracted motorists or failure to yield, conditions that are not attributable to a specific roadway or intersection defect; and
- 5. With the regrading of the embankment along the Project site frontage on both NH Route 3A and County Road and the selective trimming/removal of trees and vegetation located within the sight triangle areas of the County Road driveway, the lines of sight at the Project site driveway intersections will meet or exceed the recommended minimum distances for the intersections to operate in a safe manner based on the appropriate approach speed.

In consideration of the above, we have concluded that the Project can be accommodated within the confines of the existing transportation infrastructure in a safe and efficient manner with the implementation of the recommendations that follow.

RECOMMENDATIONS

Project Access

Access to the Project site will be provided by way of two (2) driveways configured as follows: a one-way, right-turn, entrance only driveway that will intersect the east side of NH Route 3A on the northeast corner of the NH Route 3A/County Road intersection and a one-way, right-turn, exit only driveway that will

⁸Institute of Transportation Engineers, op. cit. 1.

intersect the east side of County Road approximately 110 feet north of NH Route 3A. The following recommendations are offered with respect to the design and operation of the Project site access and internal circulations, many of which are reflected on the site plans:

- The Project site driveways will be a minimum of 20 feet in width and will convey one-way traffic entering the Project site from NH Route 3A and one-way exiting traffic to County Road, respectively, with both entering and exiting traffic restricted to right turns only. Both driveways will be designed to accommodate the turning and maneuvering requirements of delivery trucks and the largest anticipated responding emergency vehicle.
- Vehicles exiting the Project site to County Road should be placed under STOP-sign control with a marked STOP-line provided.
- "One-Way", "Do Not Enter" and "No Left Turn" signs should be installed at both driveways with the "No Left Turn" signs installed at the Project site driveway on NH Route 3A facing southbound motorists and on County Road opposite the Project site driveway. In addition, a "Right Turn Only" sign should be installed beneath the STOP-sign for the County Road Project site driveway.
- Where perpendicular parking is proposed, the drive aisle behind the parking should be a minimum of 23 feet in order to facilitate parking maneuvers.
- All signs and pavement markings to be installed within the Project site should conform to the applicable standards of the *Manual on Uniform Traffic Control Devices* (MUTCD).⁹
- Americans with Disabilities Act (ADA)-compliant wheelchair ramps should be provided at all pedestrian crossings to be constructed or modified in conjunction with the Project.
- The embankment/slope along the Project site frontage on NH Route 3A and County Road should be regraded such that no portion of the slope that is located within the sight triangle area of the County Road Project site driveway exceeds 2-feet in height as measured in reference to the surface elevation of the County Road Project site driveway. In addition, existing trees and vegetation located within the sight triangle areas of the County Road Project site driveway should be selectively trimmed or removed and maintained.
- Signs and landscaping to be installed as a part of the Project within the intersection sight triangle areas should be designed and maintained so as not to restrict lines of sight.
- Snow accumulations (windrows) within sight triangle areas should be promptly removed where such accumulations would impede sight lines.

Off-Site

NH Route 3A at County Road

As discussed previously, the Town is coordinating with NHDOT to advance specific improvements to address the disproportionate number of motor vehicle crashes that are occurring at the NH Route 3A/County Road intersection, that will include extending Belknap Road to intersect NH Route 3A opposite Birch Street becoming the fourth leg of the existing signalized intersection. This improvement will also benefit traffic operations at the NH Route 3A/County Road intersection by diverting traffic to the new intersection. In an effort to advance geometric improvements at the NH Route 3A/County Road intersection, the Project

⁹Manual on Uniform Traffic Control Devices (MUTCD); Federal Highway Administration; Washington, D.C.; 2009.

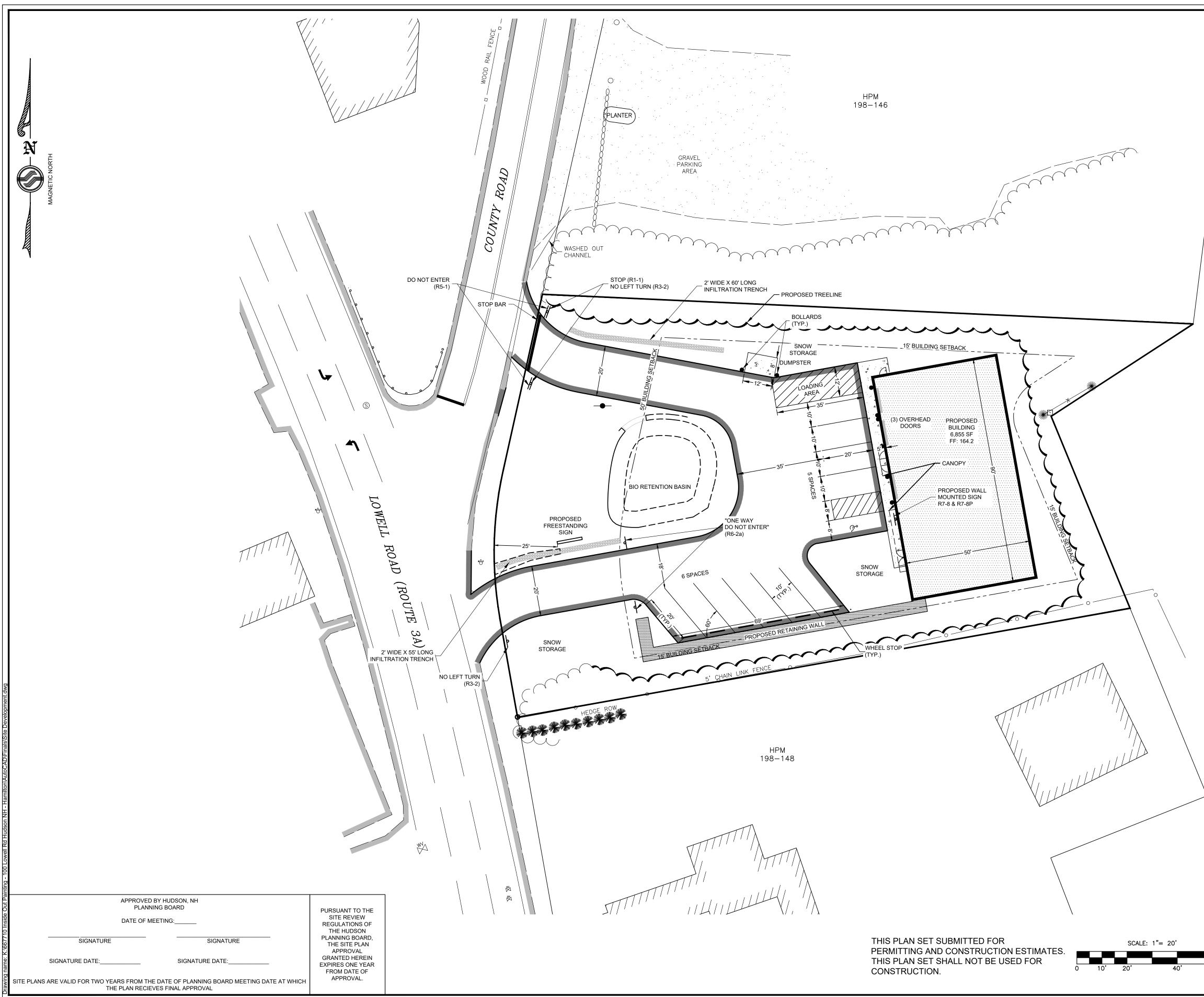
proponent will donate land to the Town to allow for the County Road approach to NH Route 3A to be realigned so as to intersect NH Route 3A at a perpendicular angle.

In advance of these improvements, it is recommended that the following measures be advanced:

- 1. Install "Intersection Ahead" warning signs (graphic symbol) with supplemental street name plaques on both NH Route 3A approaches to County Road;
- 2. Replace the existing STOP-sign and marked STOP-line on the County Road approach; and
- 3. Install a "Stop Sign Ahead" warning sign on County Road approximately 100 feet in advance of the STOP-sign.

The recommended improvements will be implemented prior to the issuance of a Certificate of Occupancy for the Project subject to receipt of all necessary rights, permits and approvals.

With implementation of the aforementioned recommendations, safe and efficient access will continue to be provided to the Project site and the Project can be accommodated within the confines of the existing and improved transportation system.


Attachments

Attachment "D"

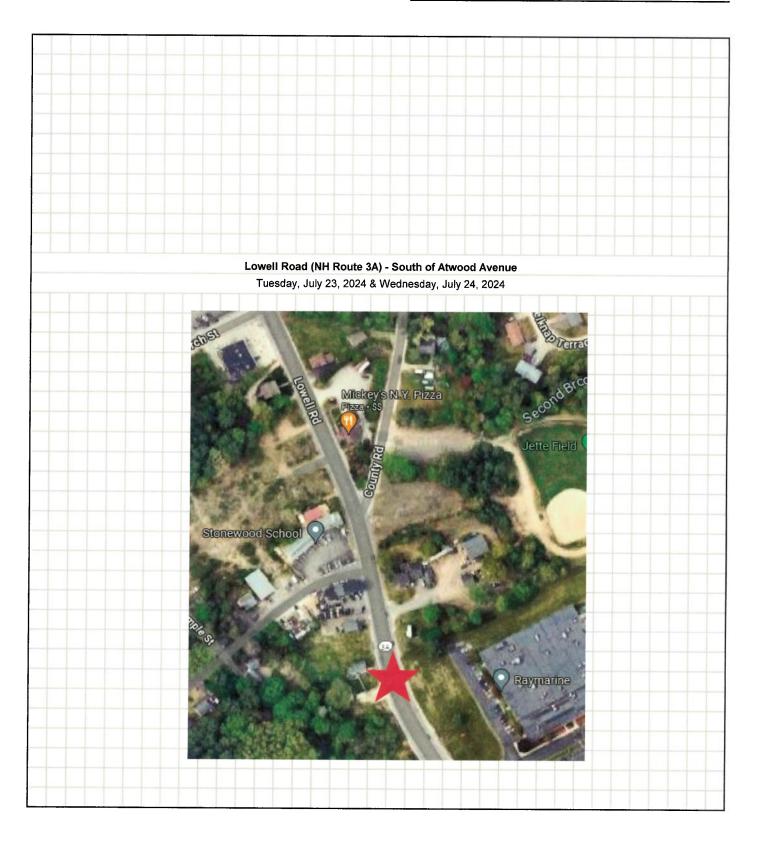
ATTACHMENT

PROJECT SITE PLAN AUTOMATIC TRAFFIC RECORDER COUNT DATA MANUAL TURNING MOVEMENT COUNT DATA SEASONAL ADJUSTMENT DATA COVID-19 ADJUSTMENT DATA VEHICLE TRAVEL SPEED DATA TRANSIT INFORMATION CRASHES GENERAL BACKGROUND TRAFFIC GROWTH BACKGROUND DEVELOPMENT TRAFFIC-VOLUME NETWORKS TRIP-GENERATION CALCULATIONS CAPACITY ANALYSIS WORKSHEETS PROJECT SITE PLAN

THE PURPOSE OF THI PROPERTY MAP 198 L			IENT OF A COMMERCIA	L BUILDING ON HUDSON
THE PROPOSED DEVE A. NEW COMMERCIAL B. PARKING AND MANI C. THREE OVERHEAD D. DUMPSTER WITH E	BUILDING UEVERING SP DOORS			
G. CONNECTION TO M	IUNICIPAL UTI /ERHEAD ELE	GHT IN/RIGHT OUT DRIV LITIES (WATER AND SEV CTRIC, THEN UNDERGR	VER) AND NATURAL GA	S
ZONING DISTRICT:		B - Buisness		
DIMENSIONAL REQUIF MINIMUM LOT SIZE: MINIMUM FRONTAGE: MAXIMUM BUILDING H FRONT SETBACK: SIDE SETBACK: REAR SETBACK:	0.6 150		PROVIDED 0.8 Ac.± (34,848 S0 171' 35' 135' 16' 17'	Q.FT.)
OPEN SPACE:	13,	939'	18,254	
		TED WITH THIS PROJEC	·	
				ND UNDERGROUND GAS AND
	FORM TO THE	TOWN OF HUDSON STA	ANDARDS.	
	ALL BE PERFO			THE MOST RECENT SET OF AS SOME ITEMS ARE NOT
THE ENGINEER SHALL SHOWN ON THESE PL		MMEDIATELY IF COND	ITIONS ARE FOUND TH	AT DO NOT MATCH WHAT IS
		CURB UNLESS OTHERW		
		E MARKED WITH AN UPF		
				OTHERWISE SPECIFIED.
				SULTANT OF THE TOWNS ECTION SHALL BE PAID BY THE
OVERHEAD DOORS AF		FOR STORAGE OF VEH E. USE OF THESE DOOF		ISNESS HOURS TO KEEP /AILBLE PARKING.
		NING REQUIREMENTS IS		E SUBJECT TO APPROVAL BY
		ATIONS SECTION 275-8. PARKING AREAS CONS		
PARKING REQUIREME				
REQUIRED: 6,855 SF / 3 PROVIDED: 11, OF WHI				
NAIVER RE	CH 1 IS VAN A	CCESSIBLE		
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
NAIVER RE	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A EQUES REQUIRES ERF	CCESSIBLE	ARED BY A NH LICENSE	ED LAND SURVEYOR.
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A	CCESSIBLE STS ROR OF CLOSURE PREP QUANTITY	ARED BY A NH LICENSE	
PROVIDED: 11, OF WHI NAIVER RE 276-11.1.B.(9) THAT R	CH 1 IS VAN A	CCESSIBLE COR OF CLOSURE PREP QUANTITY Revision gned by: TDD		Date Checked by: DMF
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F	CH 1 IS VAN A	CCESSIBLE	Drawn by: BRC relopment Plan al Develop	Date Checked by: DMF
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F	CH 1 IS VAN A	CCESSIBLE	Drawn by: BRC relopment Plan al Develop	Date Checked by: DMF
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F	CH 1 IS VAN A	CCESSIBLE STS ROR OF CLOSURE PREP QUANTITY QUANTITY Revision gned by: TDD Site Dev Commercia to Dut Paint	Drawn by: BRC relopment Plan al Develop	Date Checked by: DMF
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F	CH 1 IS VAN A	CCESSIBLE STS ROR OF CLOSURE PREP QUANTITY QUANTITY Revision gned by: TDD Site Dev Commercia to by Commercia Commercia	Drawn by: BRC relopment Plan al Develop ting and R	Date Checked by: DMF
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F	CH 1 IS VAN A	CCESSIBLE STS ROR OF CLOSURE PREP QUANTITY QUANTITY Revision gned by: TDD Site Dev Commercia to Dut Paint 100 Lo Hud	Drawn by: BRC relopment Plan al Develop ting and R owell Road	Date Checked by: DMF
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F	CH 1 IS VAN A	CCESSIBLE STS ROR OF CLOSURE PREP QUANTITY QUANTITY Revision gned by: TDD Site Dev Commercia to Dut Paint 100 Lo Hud	Drawn by: BRC relopment Plan al Develop ting and R owell Road lson, NH	Date Checked by: DMF
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F	CH 1 IS VAN A	Revision gned by: TDD Site Dev Commercia 100 Lo Hud Assessors e	Drawn by: BRC relopment Plat al Develop ting and R owell Road son, NH Map 198 Lot SFC	Date Checked by: DMF
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F Windham, Ne Portland Sheet 3 of 9	CH 1 IS VAN A	Revision gned by: TDD Site Dev Commercia 100 Lo Hud Assessors E N G I I	Drawn by: BRC relopment Plan al Develop ting and R owell Road lson, NH	Date Checked by: DMF
PROVIDED: 11, OF WHI MAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F Windham, Ne Portland Sheet 3 of 9	CH 1 IS VAN A	Revision gned by: TDD Site Dev Commercia 100 Lo Hud Assessors E N G I I	Drawn by: BRC relopment Plan al Develop ting and R owell Road son, NH Map 198 Lot SFC N E E R I N	Date Checked by: DMF Checked b
PROVIDED: 11, OF WHI VAIVER RE 276-11.1.B.(9) THAT R TOTAL 75-8.C.(2)(m) F Windham, Ne Portland	CH 1 IS VAN A	CCESSIBLE STS ROR OF CLOSURE PREP QUANTITY QUANTITY Revision gned by: TDD Site Dev Commercia 100 Lo Hud Assessors E N G I I Sca	Drawn by: BRC relopment Plan al Develop ting and R owell Road son, NH Map 198 Lot SFC N E E R I N ale: 1" = 20'	Date Checked by: DMF Checked b

Drawing: Site Development Layout: Site Development - 3

Zoning Classification: B - Business


AUTOMATIC TRAFFIC RECORDER COUNT DATA

CALCULATION SHEET

Attachment "D"

Project:	SFC - Hudson	Job Number:	2312A
Calculated By:		Date:	
Checked By:		Date:	
Sheet No:		Of:	
Subject:	ATR Data - NH Route 3A		

Daily Vehicle Volume Report

Study Date: Tuesday, 07/23/2024 Unit ID: SGP13

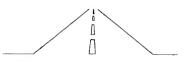
Location: Hudson

	5B	NB	
	Northbound(B-A) Volume	Northbound(A-B) Volume	Total Volume
00:00 - 00:59	21	55	76
01:00 - 01:59	22	24	46
02:00 - 02:59	25	36	61
03:00 - 03:59	57	21	78
04:00 - 04:59	260	62	322
05:00 - 05:59	646	135	781
06:00 - 06:59	794	232	1026
07:00 - 07:59	817	375	1192
08:00 - 08:59	839	459	1298
09:00 - 09:59	711	503	1214
10:00 - 10:59	641	491	1132
11:00 - 11:59	646	634	1280
12:00 - 12:59	713	708	1421
13:00 - 13:59	636	652	1288
14:00 - 14:59	634	737	1371
15:00 - 15:59	638	925	1563
16:00 - 16:59	708	916	1624
17:00 - 17:59	626	959	1585
18:00 - 18:59	554	727	1281
19:00 - 19:59	386	595	981
20:00 - 20:59	318	451	769
21:00 - 21:59	262	302	564
22:00 - 22:59	178	133	311
23:00 - 23:59	76	135	211
Totals	11208	10267	21475
AM Peak Time	07:37 - 08:36	11:00 - 11:59	07:43 - 08:42
AM Peak Volume	875	634	1332
PM Peak Time	12:15 - 13:14	16:56 - 17:55	16:43 - 17:42
PM Peak Volume	720	971	1646

Daily Vehicle Volume Report

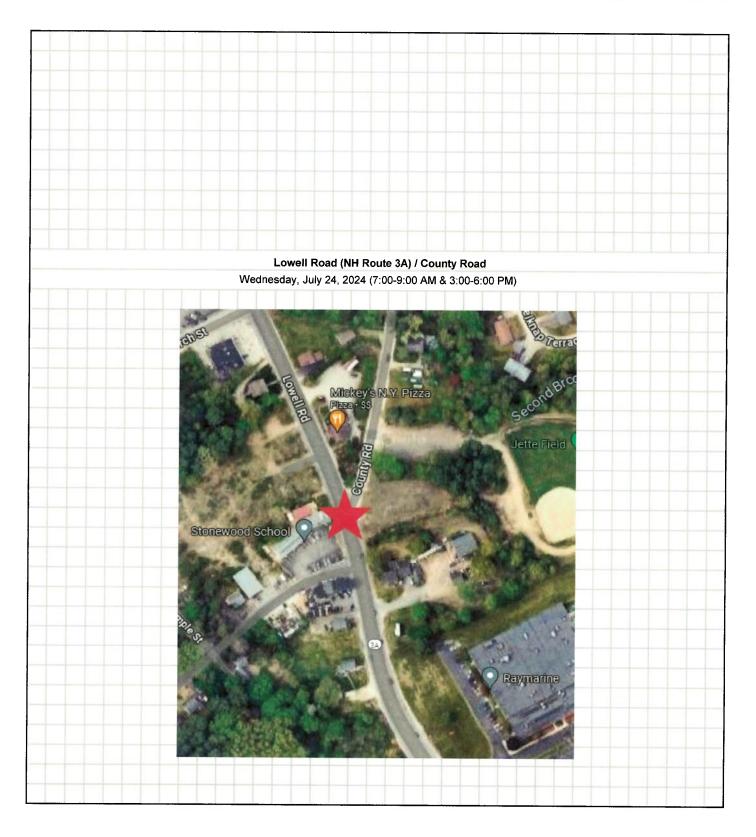
Study Date: Wednesday, 07/24/2024

Unit ID: SGP13


Location: Hudson

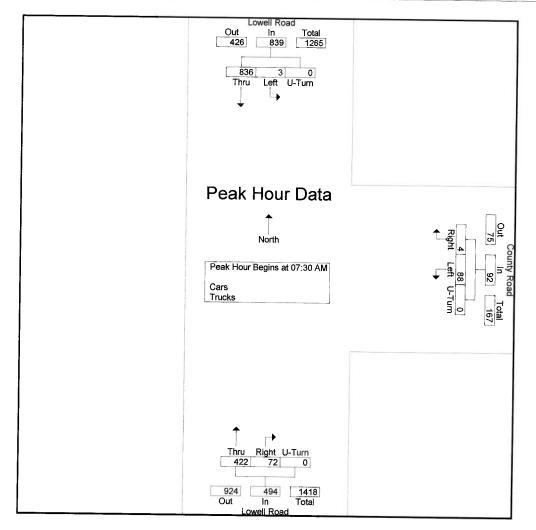
	50	NB	
	N orthbound(B-A) Volume	Northbound(A-B) Volume	Total Volume
00:00 - 00:59	33	74	107
01:00 - 01:59	15	23	38
02:00 - 02:59	22	31	53
03:00 - 03:59	56	23	79
04:00 - 04:59	255	58	313
05:00 - 05:59	629	127	756
06:00 - 06:59	817	248	1065
07:00 - 07:59	855	382	1237
08:00 - 08:59	779	420	1199
09:00 - 09:59	510	448	958
10:00 - 10:59	615	483	1098
11:00 - 11:59	632	554	1186
12:00 - 12:59	376	601	977
13:00 - 13:59	485	565	1050
14:00 - 14:59	602	709	1311
15:00 - 15:59	617	904	1521
16:00 - 16:59	625	931	1556
17:00 - 17:59	612	914	1526
18:00 - 18:59	550	739	1289
19:00 - 19:59	441	604	1045
20:00 - 20:59	364	449	813
21:00 - 21:59	258	303	561
22:00 - 22:59	120	168	288
23:00 - 23:59	75	104	179
Totals	10343	9862	20205
AM Peak Time	07:04 - 08:03	10:57 - 11:56	07:32 - 08:31
AM Peak Volume	866	564	1291
PM Peak Time	14:45 - 15:44	15:37 - 16:36	16:08 - 17:07
PM Peak Volume	638	957	1573

MANUAL TURNING MOVEMENT COUNT DATA


CALCULATION SHEET

Stephen G. Pernaw & Company, Inc.

Project:	SFC - Hudson	Job Number:	2312A
Calculated By:		Date:	
Checked By:		Date:	
Sheet No:		Of:	
Subject:	TMC Data - Intersection 1		

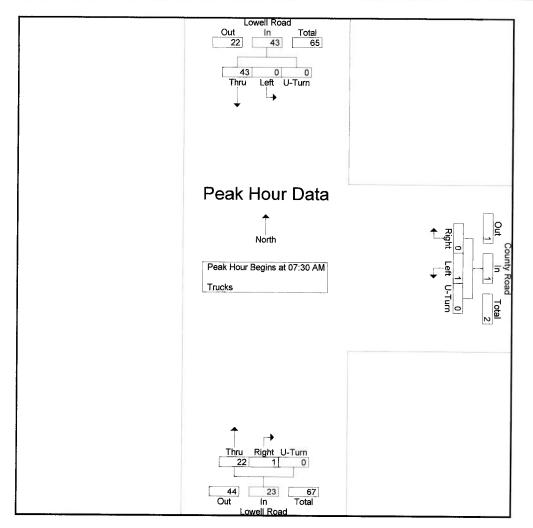

Attachment "D"

Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code : Start Date : 7/24/2024 Page No : 2

01-1-7	-	South	ll Road				ty Road tbound						
Start Time	Thru	Left	U-Turn		Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis F	-rom 07:00) AM to 0	8:45 AM ·	Peak 1 of 1					3		a . a	ripp. rotai	int. Tota
Peak Hour for Entire	Intersectio	n Begins	at 07:30	AM									
07:30 AM	194	ັ3	0	197	3	21	0	24	17	103	0	120	
07:45 AM	222	0	0	222	1	25	õ	26	16	109	0	120	341
08:00 AM	212	0	0	212	0	21	õ	21	20	103	0		373
08:15 AM	208	0	0	208	õ	21	ñ	21	19	99	0	131	364
Total Volume	836	3	0	839	4	88	ő	92	72	422	0	118	347
% App. Total	99.6	0.4	Ó		4.3	95.7	ñ	52	14.6	422 85.4	0	494	1425
PHF	.941	.250	.000	.945	.333	.880	.000	.885	.900		0		
				,010		.000	.000	.000	.900	.950	.000	.943	.955

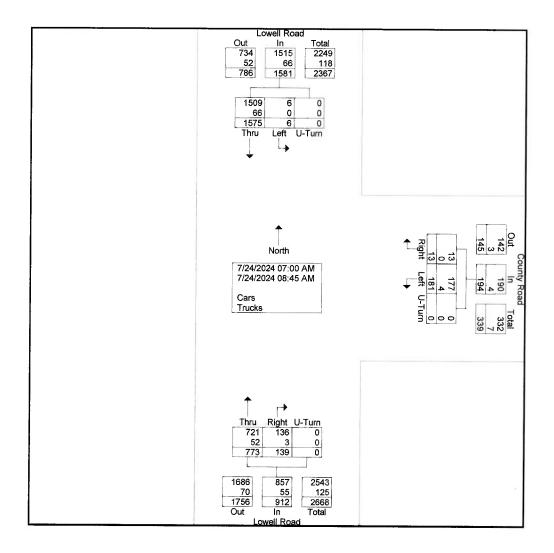


Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code Start Date : 7/24/2024 Page No : 2

			ll Road nbound				ty Road tbound				ell Road hbound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis F								and the second				· · · · · · · · · · · · · · ·	inter rota
Peak Hour for Entire	Intersectio	n Begins	at 07:30	AM									
07:30 AM	15	Ō	0	15	0	1	0	1	0	7	0	7	23
07:45 AM	7	0	0	7	0	0	0	Ó	õ	7	õ	7	14
08:00 AM	15	0	0	15	0	0	Ó	Ō	õ	5	õ	5	20
08:15 AM	6	0	0	6	0	0	0	0	1	3	õ	4	10
Total Volume	43	0	0	43	0	1	0	1	1	22	0	23	67
% App. Total	100	0	0		0	100	0		4.3	95.7	Õ	20	0,
PHF	.717	.000	.000	.717	.000	.250	.000	.250	.250	.786	.000	.821	.728

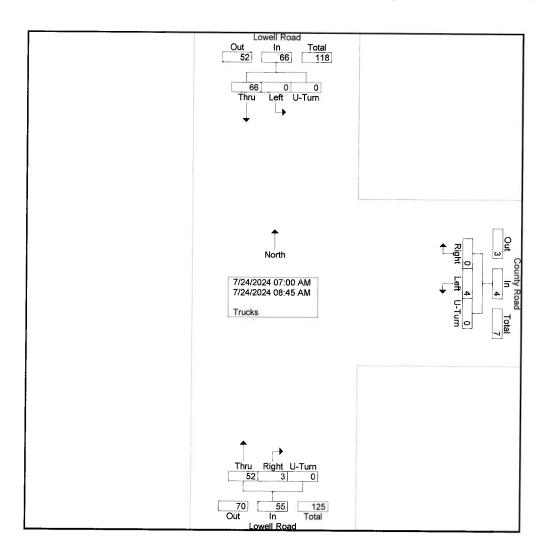

Attachment "D"

Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code Start Date : 7/24/2024 Page No : 1

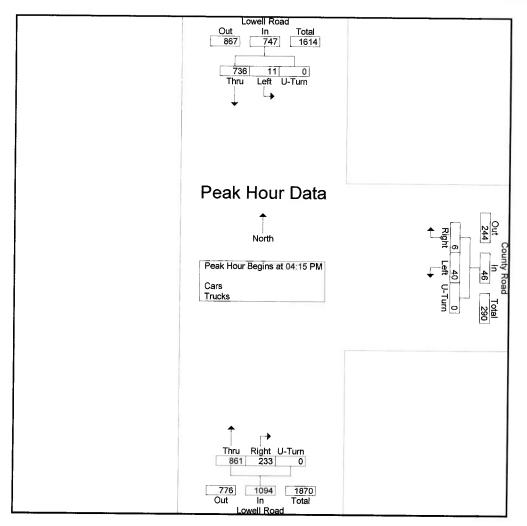
					Groups	Printed- C	Cars - Tru	cks					
			ll Road			Count	ty Road			Lowe	ll Road		
			nbound			West	tbound			North	nbound		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
07:00 AM	201	3	0	204	1	28	0	29	19	70	0	89	322
07:15 AM	197	0	0	197	2	25	0	27	12	88	Ō	100	324
07:30 AM	194	3	0	197	3	21	0	24	17	103	õ	120	341
07:45 AM	222	0	0	222	1	25	0	26	16	109	Ō	125	373
Total	814	6	0	820	7	99	0	106		370	0	434	1360
08:00 AM	212	0	0	212	0	21	0	21	20	111	0	131	364
08:15 AM	208	0	0	208	0	21	0	21	19	99	Ó	118	347
08:30 AM	170	0	0	170	2	19	0	21	14	84	Õ	98	289
08:45 AM	171	0	0	171	4	21	0	25	22	109	õ	131	327
Total	761	0	0	761	6	82	0	88	75	403	0	478	1327
Grand Total	1575	6	0	1581	13	181	0	194	139	773	0	912	2687
Apprch %	99.6	0.4	0		6.7	93.3	0		15.2	84.8	0		
Total %	58.6	0.2	0	58.8	0.5	6.7	0	7.2	5.2	28.8	0	33.9	
Cars	1509	6	0	1515	13	177	0	190	136	721	0	857	2562
% Cars	95.8	100	0	95.8	100	97.8	0	97.9	97.8	93.3	0	94	95.3
Trucks	66	0	0	66	0	4	0	4	3	52	0	55	125
% Trucks	4.2	0	0	4.2	0	2.2	0	2.1	2.2	6.7	0	6	4.7



Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

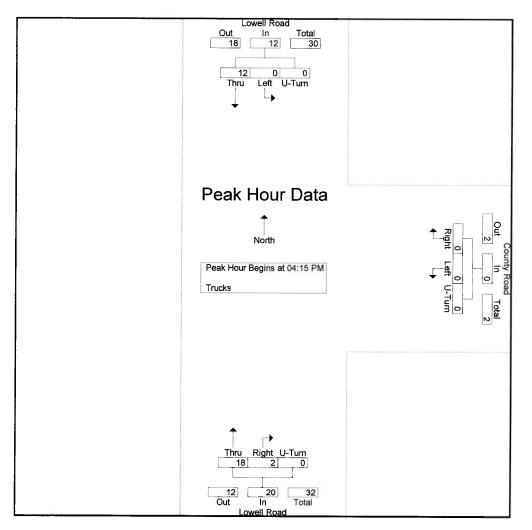
File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code : Start Date : 7/24/2024 Page No : 1


					Grou	ps Printe	d- Trucks	;					
		South	ll Road				ty Road tbound				ell Road		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Tota	I Right	Thru	U-Turn	App. Total	Int. Total
07:00 AM	7	0	0	7	0	2	0	2	2 0	6	0	6	15
07:15 AM	2	0	0	2	0	1	0	1	2	9	õ	11	14
07:30 AM	15	0	0	15	0	1	Ō	1	i ō	7	õ	7	23
07:45 AM	7	0	0	7	Ő	0	0	(n n	7	ň	7	14
Total	31	0	0	31	0	4	0	4	1 2	29	0	31	66
08:00 AM	15	0	0	15	0	0	0	C	0 0	5	0	5	20
08:15 AM	6	0	0	6	0	0	0	Ċ) 1	3	õ	4	10
08:30 AM	10	0	0	10	Ō	Ō	Ō	Ċ	n n	7	ň	7	10
08:45 AM	4	0	0	4	0	Õ	õ	Č	n õ	. 8	ň	8	12
Total	35	0	0	35	0	0	0	C) 1	23	0	24	59
Grand Total	66	0	0	66	0	4	0	4	3	52	0	55	125
Apprch %	100	0	0		0	100	0		5.5	94.5	ō		120
Total %	52.8	0	0	52.8	0	3.2	0	3.2		41.6	õ	44	

Stephen G. Pernaw & Company, Inc. P.O. Box 1721 Concord, New Hampshire 03302

File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code : Start Date : 7/24/2024 Page No : 3

		South				County Road Westbound				Lowell Road Northbound			
Start Time	Thru			App. Total	Right	Left	U-Turn A	pp. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis F	rom 03:00	PM to 05	:45 PM - F	Peak 1 of 1				<u></u>	3		0.10111	rop. rotur	int. Tota
Peak Hour for Entire	Intersection	n Begins	at 04:15 P	M									
04:15 PM	185	1	0	186	2	9	0	11	63	228	0	291	488
04:30 PM	191	4	0	195	1	11	ō	12	62	210	ñ	272	479
04:45 PM	169	3	0	172	2	10	Ó	12	55	199	Ő	254	438
05:00 PM	191	3	0	194	1	10	0	11	53	224	õ	277	482
Total Volume	736	11	0	747	6	40	0	46	233	861	0	1094	1887
% App. Total	98.5	1.5	0		13	87	Ō		21.3	78.7	õ	1034	1007
PHF	.963	.688	.000	.958	.750	.909	.000	.958	.925	.944	.000	.940	.967



Stephen G. Pernaw & Company, Inc. Attachment "D"

Concord, New Hampshire 03302

File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code : Start Date : 7/24/2024 Page No : 2

			l Road bound				ty Road tbound				ell Road		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
Peak Hour Analysis I	From 04:15	PM to 05	5:00 PM -	Peak 1 of 1									
Peak Hour for Entire	Intersection	n Begins	at 04:15	РМ									
04:15 PM	1	Τo	0	1	0	0	0	0	0	3	0	3	4
04:30 PM	4	0	0	4	0	0	0	Ō	1	3	Ō	4	8
04:45 PM	5	0	0	5	0	0	0	Ő	Ō	5	Ō	5	10
05:00 PM	2	0	0	2	0	0	0	0	1	7	Ō	8	10
Total Volume	12	Ó	0	12	0	0	0	0	2	18	0	20	32
% App. Total	100	0	0		0	0	0		10	90	Ō		
PHF	.600	.000	.000	.600	.000	.000	.000	.000	.500	.643	.000	.625	.800

Stephen G. Pernaw & Company, Inc. P.O. Box 1721 Concord, New Hampshire 03302

Weather: Fair Collected By: MV Job Number: 2312A Town/State: Hudson, New Hampshire

File Name :: 2312A_Intersection_1_1209201_07-24-2024 Site Code : Start Date : 7/24/2024 Page No : 1

,					Groups		Cars - Tru	cks					
		Sout	ll Road				ty Road tbound				ll Road		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
03:00 PM	179	1	0	180	1	14	0	15	57	195	0	252	447
03:15 PM	163	1	0	164	1	12	0	13	51	219	0	270	447
03:30 PM	189	0	0	189	2	11	0	13	56	206	õ	262	464
03:45 PM	172	4	0	176	2	15	0	17	43	209	ŏ	252	445
Total	703	6	0	709	6	52	Ō	58	207	829	Õ	1036	1803
04:00 PM	170	1	0	171	5	19	0	24	54	204	0	258	453
04:15 PM	185	1	0	186	2	9	0	11	63	228	Ō	291	488
04:30 PM	191	4	0	195	1	11	0	12	62	210	Õ	272	479
04:45 PM	169	3	0	172	2	10	0	12	55	199	ō	254	438
Total	715	9	0	724	10	49	0	59	234	841	0	1075	1858
05:00 PM	191	3	0	194	1	10	0	11	53	224	0	277	482
05:15 PM	185	1	0	186	0	9	0	9	43	247	0	290	485
05:30 PM	193	1	0	194	0	10	0	10	53	207	Ó	260	464
05:45 PM	162	7	0	169	3	11	0	14	49	216	Ō	265	448
Total	731	12	0	743	4	40	0	44	198	894	0	1092	1879
Grand Total	2149	27	0	2176	20	141	0	161	639	2564	0	3203	5540
Apprch %	98.8	1.2	0		12.4	87.6	0		20	80	õ	0200	00.0
Total %	38.8	0.5	0	39.3	0.4	2.5	0	2.9	11.5	46.3	õ	57.8	
Cars	2106	27	0	2133	20	141	0	161	631	2510	0	3141	5435
% Cars	98	100	0	98	100	100	0	100	98.7	97.9	õ	98.1	98.1
Trucks	43	0	0	43	0	0	0	0	8	54	Ő	62	105
% Trucks	2	0	0	2	0	0	0	0	1.3	2.1	Ō	1.9	1.9

Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code : Start Date : 7/24/2024 Page No : 2 Lowell Road Out 2530 54 2584 Total 4663 97 In 2133 43 2176 4760 2106 27 0 43 0 0 2149 Thru 27 0 Left U-Turn 4 Out 658 666 20 Right North 7/24/2024 03:00 PM 7/24/2024 05:45 PM 141 0 Left 161 161 U-Turn 0 Cars Trucks 819 827 -Right U-Turn 631 0 Thru 2510 0 54 8 2564 639 0 2247 43 2290 Out 3141 62 3203 In 5388 105 5493 Total well Roa

Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

Weather: Fair Collected By: MV Job Number: 2312A Town/State: Hudson, New Hampshire

File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code : Start Date : 7/24/2024 Page No : 1

					Groups		Cars - Tru	cks					
		Sout	ll Road				ty Road tbound				ll Road		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
03:00 PM	179	1	0	180	1	14	0	15	57	195	0	252	447
03:15 PM	163	1	0	164	1	12	0	13	51	219	0	270	447
03:30 PM	189	0	0	189	2	11	0	13	56	206	Ō	262	464
03:45 PM	172	4 6	0	176	2	15	0	17	43	209	Ō	252	445
Total	703	6	0	709	6	52	0	58	207	829	0	1036	1803
04:00 PM	170	1	0	171	5	19	0	24	54	204	0	258	453
04:15 PM	185	1	0	186	2	9	0	11	63	228	0	291	488
04:30 PM	191	4	0	195	1	11	0	12	62	210	0	272	479
04:45 PM	169	3	0	172	2	10	0	12	55	199	0	254	438
Total	715	9	0	724	10	49	0	59	234	841	0	1075	1858
05:00 PM	191	3	0	194	1	10	0	11	53	224	0	277	482
05:15 PM	185	1	0	186	0	9	0	9	43	247	0	290	485
05:30 PM	193	1	0	194	0	10	0	10	53	207	0	260	464
05:45 PM	162	7	0	169	3	11	0	14	49	216	0	265	448
Total	731	12	0	743	4	40	0	44	198	894	0	1092	1879
Grand Total	2149	27	0	2176	20	141	0	161	639	2564	0	3203	5540
Apprch %	98.8	1.2	0		12.4	87.6	0		20	80	0		
Total %	38.8	0.5	0	39.3	0.4	2.5	0	2.9	11.5	46.3	0	57.8	
Cars	2106	27	0	2133	20	141	0	161	631	2510	0	3141	5435
% Cars	98	100	0	98	100	100	0	100	98.7	97.9	0	98.1	98.1
Trucks	43	0	0	43	0	0	0	0	8	54	0	62	105
% Trucks	2	0	0	2	0	0	0	0	1.3	2.1	0	1.9	1.9

Stephen G. Pernaw & Company, Inc. P.O. Box 1721

Concord, New Hampshire 03302

File Name : 2312A_Intersection_1_1209201_07-24-2024 Site Code : Start Date : 7/24/2024 Page No : 2 Lowell Road Out 2530 54 Total 4663 97 4760 In 2133 43 2176 2584 2106 27 0 0 0 43 0 2149 Thru 27 0 Left U-Turn 4 Out 658 666 20 0 Right North 7/24/2024 03:00 PM 141 141 7/24/2024 05:45 PM 161 0 Ξ Ł U-Turn Cars Trucks Total 819 827 -Right U-Turn 631 0 8 0 Thru 2510 54 2564 639 0 5388 105 5493 Total 2247 (4) 62 3203 In ↓ Γ 3141 43 2290 Out ell R

SEASONAL ADJUSTMENT DATA

Attachment "D"

Year 2019 Monthly Data

Town:	Nashua
Station:	62315281
Location:	FEET south of the Canal Bridge Exit 5-6
Group:	3

		Adjustment	Adjustment
<u>Month</u>	<u>ADT</u>	to Average	<u>to Peak</u>
January	115,162	1.09	1.14
February	118,623	1.06	1.11
March	121,898	1.03	1.08
April	126,360	0.99	1.04
May	130,908	0.96	1.01
June	130,727	0.96	1.01
July	128,641	0.98	1.02
August	131,834	0.95	1.00
September	128,012	0.98	1.03
October	131,793	0.95	1.00
November	125,941	1.00	1.05
December	116,379	1.08	1.13
AADT:	125,544		

Peak Month: 131,834

COVID-19 ADJUSTMENT DATA

Attachment "D"

July 2019 Average Count Data – Sta. 62315281

ADT: 128,641 Weekday Morning Peak-Hour Traffic: 9,425 Weekday Evening Peak-Hour Traffic: 11,017

July 2024 Average Count Data – Sta. 62315281

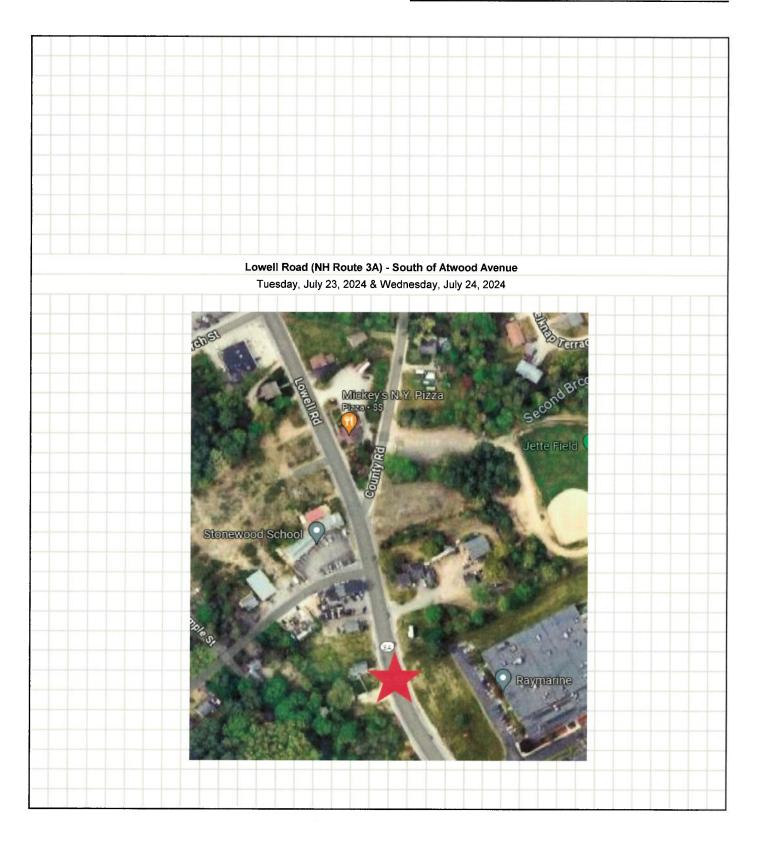
ADT: 117,869 Weekday Morning Peak-Hour Traffic: 8,209 Weekday Evening Peak-Hour Traffic: 10,050

COVID Adjustment

ADT: $1 - \frac{128,641}{117,869} = -0.091$

Weekday Morning Adjustment: $1 - \frac{9,425}{8,209} = -0.148$

Weekday Evening Adjustment: $1 - \frac{11017}{10,050} = -0.096$


VEHICLE TRAVEL SPEED DATA

CALCULATION SHEET

Attachment "D"

Project:	SFC - Hudson	Job Number:	2312A
Calculated By:		Date:	
Checked By:		Date:	
Sheet No:		Of:	
Subject:	Travel Speed Data - NH F	Route 3A	

Daily Total Speeds (MPH)

Study Date: Tuesday, 07/23/2024

Unit ID: SGP13

	5-	15-	20-	25-	30-	35-	40-	45-	50-	55-	60-	65-	70-	75-	80-	
	14	19	24	29	34	39	44	49	54	59	64	69	74	79	99	Total
00:00 - 00:59	0	0	0	6	25	26	13	5	1	0	0	0	0	0	0	76
01:00 - 01:59	0	0	0	4	23	14	4	1	0	0	0	0	0	0	0	46
02:00 - 02:59	0	0	1	6	34	16	3	1	0	0	0	0	0	0	0	61
03:00 - 03:59	0	0	0	5	15	40	16	1	0	0	0	0	0	0	1	78
04:00 - 04:59	0	1	0	19	111	158	30	2	1	0	0	0	0	0	0	322
05:00 - 05:59	0	0	1	58	365	308	43	5	1	0	0	0	0	0	0	781
06:00 - 06:59	1	1	10	172	511	255	63	9	1	0	1	0	1	0	1	1026
07:00 - 07:59	1	1	20	166	558	366	67	9	1	1	1	0	0	0	0	1191
08:00 - 08:59	1	1	14	200	633	377	53	7	3	3	0	1	0	0	2	1295
09:00 - 09:59	0	3	11	112	600	409	62	9	2	1	2	1	1	0	1	1214
10:00 - 10:59	0	2	10	112	551	392	53	7	1	1	1	0	0	0	1	1131
11:00 - 11:59	1	3	24	163	627	387	60	4	4	1	0	0	2	0	3	1279
12:00 - 12:59	0	13	38	187	683	408	78	5	1	2	1	2	1	0	1	1420
13:00 - 13:59	4	4	26	211	631	344	56	3	3	1	0	1	0	0	3	1287
14:00 - 14:59	2	13	40	253	701	312	36	6	3	2	1	0	0	0	1	1370
15:00 - 15:59	7	42	89	281	764	335	30	6	1	1	1	0	0	0	3	1560
16:00 - 16:59	1	26	59	385	815	287	31	7	0	1	0	2	0	1	3	1618
17:00 - 17:59	17	29	41	254	789	405	38	3	2	1	2	1	1	1	0	1584
18:00 - 18:59	1	2	21	183	667	346	46	5	1	0	0	2	2	1	0	1277
19:00 - 19:59	0	12	12	82	451	360	50	7	1	0	2	1	2	0	1	981
20:00 - 20:59	0	1	6	77	367	269	43	2	1	1	0	1	0	0	1	769
21:00 - 21:59	0	2	6	64	257	196	34	4	1	0	0	0	0	0	0	564
22:00 - 22:59	0	0	0	27	143	103	31	6	1	0	0	0	0	0	0	311
23:00 - 23:59	0	1	1	15	100	74	18	2	0	0	0	0	0	0	0	211
Totals	36	157	430	3042	10421	6187	958	116	30	16	12	12	10	3	22	21452
Percent of Total	0.2	0.7	2.0	14.2	48.6	28.8	4.5	0.5	0.1	0.1	0.1	0.1	0.0	0.0	0.1	100
Percent of AM	0.0	0.1	1.1	12.0	47.7	32.3	5.5	0.7	0.2	0.1	0.1	0.0	0.0	0.0	0.1	100
Percent of PM	0.2	1.1	2.6	15.6	49.2	26.6	3.8	0.4	0.1	0.1	0.1	0.1	0.0	0.0	0.1	100
Standard	Deviatior	1:	5.3 MF	ъН			Ten Mile	Pace:	30 to 3	39 MPH			85th P	ercentile		38.4 MPI
Mea	an Speed	l:	33.6 MF	РΗ	Pe	ercent in	Ten Mile	Pace:		77.4%						
Media	an Speed	l:	33.4 MF	РΗ									15th P	ercentile	:	29.3 MPI
Mod	Ial Speed	l:	32.5 MF	РΗ									90th P	ercentile	:	39.2 MPI
													95th P	ercentile	•	40.6 MPI

Daily Total Speeds (MPH)

Study Date: Wednesday, 07/24/2024

Unit ID: SGP13

ſ	5-	15-	20-	25-	30-	35-	40-	45-	50-	55-	60-	65-	70-	75-	80-	
	14	19	24	29	34	39	44	49	54	59	64	69	74	79	99	Total
00:00 - 00:59	0	0	1	11	35	52	5	2	0	1	0	0	0	0	0	107
01:00 - 01:59	0	0	0	3	14	19	2	0	0	0	0	0	0	0	0	38
02:00 - 02:59	0	0	0	6	25	20	2	0	0	0	0	0	0	0	0	53
03:00 - 03:59	0	0	1	9	18	33	17	1	0	0	0	0	0	0	0	79
04:00 - 04:59	0	1	0	14	94	162	32	7	2	1	0	0	0	0	0	313
05:00 - 05:59	0	0	2	29	302	339	70	10	4	0	0	0	0	0	0	756
06:00 - 06:59	1	2	7	78	468	401	83	16	5	1	0	0	1	0	2	1065
07:00 - 07:59	3	7	17	159	586	387	63	7	3	1	0	0	1	1	1	1236
08:00 - 08:59	0	3	18	165	590	351	58	7	1	2	2	0	0	0	1	1198
09:00 - 09:59	70	50	62	179	370	177	24	9	3	1	0	0	1	0	3	949
10:00 - 10:59	1	2	7	138	638	266	40	2	1	1	0	0	0	1	0	1097
11:00 - 11:59	8	4	23	197	580	317	49	5	0	2	0	0	0	0	0	1185
12:00 - 12:59	72	73	50	173	416	159	20	3	4	0	0	1	0	0	0	971
13:00 - 13:59	10	3	15	140	555	273	40	6	1	0	3	0	0	0	2	1048
14:00 - 14:59	3	4	23	162	590	453	63	2	2	2	0	0	0	0	2	1306
15:00 - 15:59	15	29	41	201	711	458	57	2	0	0	1	2	0	1	0	1518
16:00 - 16:59	1	6	29	290	819	356	36	8	2	2	1	0	3	1	1	1555
17:00 - 17:59	4	19	52	158	706	502	62	11	4	1	2	1	1	1	0	1524
18:00 - 18:59	0	1	13	132	589	472	66	9	1	1	2	1	1	0	1	1289
19:00 - 19:59	2	6	9	103	457	376	73	6	5	2	0	0	0	1	1	1041
20:00 - 20:59	0	2	6	85	403	270	39	3	1	0	1	0	0	0	0	810
21:00 - 21:59	0	2	16	97	290	135	17	4	0	0	0	0	0	0	0	561
22:00 - 22:59	0	0	2	22	137	98	25	4	0	0	0	0	0	0	0	288
23:00 - 23:59	0	0	0	8	81	70	15	4	1	0	0	0	0	0	0	179
Totals	190	214	394	2559	9474	6146	958	128	40	18	12	5	8	6	14	20166
Percent of Total	0.9	1.1	2.0	12.7	47.0	30.5	4.8	0.6	0.2	0.1	0.1	0.0	0.0	0.0	0.1	100
Percent of AM	1.0	0.9	1.7	12.2	46.1	31.3	5.5	0.8	0.2	0.1	0.0	0.0	0.0	0.0	0.1	100
Percent of PM	0.9	1.2	2.1	13.0	47.6	30.0	4.2	0.5	0.2	0.1	0.1	0.0	0.0	0.0	0.1	100
Standard	Deviation	:	5.7 MF	РН	I,		Ten Mile	Pace:	30 to 3	39 MPH			85th P	ercentile		38.5 MP
Mea	an Speed	:	33.6 MF	РΗ	Pe	rcent in	Ten Mile	Pace:		77.5%						
Media	an Speed	:	33.5 MF	РН									15th P	ercentile:		29.4 MP
	al Speed		32.5 MF										90th P	ercentile:		39.3 MPI
		-												ercentile:		40.9 MPI

Daily Northbound(A-B) Speeds (MPH)

Study Date: Tuesday, 07/23/2024

Unit ID: SGP13

	5- 14	15- 19	20- 24	25- 29	30-	35-	40-	45-	50-	55-	60-	65-	70-	75-	80-	
00:00 - 00:59	14	19	24		34	39	44	49	54	59	64	69	74	79	99	Totai
01:00 - 01:59	0	0	0	4	16	19	11	4	1	0	0	0	0		0	55
01:00 - 01:59	0	0	0	2	12	7	2	1	0	-	0	0	0	-	0	24
02:00 - 02:59	0	0	0	3	22 3	8 11		1	0	-	0	0	0		0	36
03:00 - 03:59	0	0	0	3	3 14	27	5 16	1	0	-	0	0	0	0	0	21
05:00 - 05:59	0	0	1	-	31	66	27		· · · · · ·	0	0	0	0	0	0	62
	0	0	1	4				5	1	0	0	0	0	0	0	135
06:00 - 06:59 07:00 - 07:59	0	0	3	5 12	58 126	102	53	9	1	0	1	0	1	0	1	232
07:00 - 07:59	0	1			•	180	46	7	0	-	1	0	0	0	0	375
	0	3	3	66	183	157	40	4	2	2	0	0	0	0	0	458
09:00 - 09:59	0	-	5	30	192	218	41	7	2	1	1	1	1	0	1	503
10:00 - 10:59 11:00 - 11:59	1	2	5 19	40	198	201	39	4	1	0	0	0	0	0	1	491
12:00 - 12:59	0	2	26	90	270	204	42	2	1	0	0	0	1	0	1	633
	1	4		101	285	226	57	3	1	0	1	2	1	0	1	708
13:00 - 13:59			14	72	292	222	45	2	1	1	0	0	0	0	1	652
14:00 - 14:59	2	11	22	149	384	141	23	3	1	1	0	0	0	0	0	737
15:00 - 15:59	0	41	80	184	414	176	14	5	1	0	0	0	0	0	0	922
16:00 - 16:59	-	24	53	239	425	142	22	4	0	1	0	1	0	1	2	914
17:00 - 17:59	16	28	35	168	454	230	22	1	1	1	1	1	0	0	0	958
18:00 - 18:59	1	1	18	126	350	194	30	2	1	0	0	1	2	1	0	727
19:00 - 19:59	0	12	12	49	238	239	36	6	1	0	2	0	0	0	0	595
20:00 - 20:59	0	1	6	34	185	190	31	2	1	0	0	1	0	0	0	451
21:00 - 21:59	0	0	3	19	122	129	26	3	0	0	0	0	0	0	0	302
22:00 - 22:59	0	0	0	4	45	56	22	5	1	0	0	0	0	0	0	133
23:00 - 23:59	0	0	0	10	56	56	11	2	0	0	0	0	0	0	0	135
Totals	28	131	306	1415	4375	3201	663	84	19	7	7	7	6	2	8	10259
Percent of Total	0.3	1.3	3.0	13.8	42.6	31.2	6.5	0.8	0.2	0.1	0.1	0.1	0.1	0.0	0.1	100
Percent of AM	0.0	0.3	1.2	8.6	37.2	39.7	10.7	1.5	0.3	0.1	0.1	0.0	0.1	0.0	0.1	100
Percent of PM	0.4	1.7	3.7	16.0	44.9	27.7	4.7	0.5	0.1	0.1	0.1	0.1	0.0	0.0	0.1	100
Standard			5.8 MF				Ten Mile		30 to 3	39 MPH			85th P	ercentile	:	38.8 MPH
	an Speed		33.8 MF		Pe	ercent in	Ten Mile	Pace:		73.8%						
	an Speed		33.7 MF	эн										ercentile	-	28.8 MPH
Mod	dal Speed	d:	32.5 MF	эн										ercentile		39.7 MPH
													95th P	ercentile	:	42.2 MPH

Daily Northbound(A-B) Speeds (MPH)

Study Date: Wednesday, 07/24/2024

Unit ID: SGP13

	5- 14	15- 19	20- 24	25- 29	30- 34	35- 39	40- 44	45- 49	50- 54	55- 59	60- 64	65- 69	70- 74	75- 79	80- 99	Total
00:00 - 00:59	0	0	0	6	21	40	4	2	0	1	0	03	0	0	99 0	
01:00 - 01:59	0	0	0	1	9	12	1	0	0	0	0	0	0	0	0	
02:00 - 02:59	0	0	0	5	15	9	2	0	0	0	0	0	0	0	0	
03:00 - 03:59	0	0	0	3	5	9	5	1	0	0	0	0	0	0	0	
04:00 - 04:59	0	0	0	3	12	28	10	2	2	1	0	0	0	0	0	
05:00 - 05:59	0	0	0	2	23	55	37	6	4	0	0	0	0	0	0	127
06:00 - 06:59	1	0	1	6	52	115	52	15	5	0	0	0	0	0	1	248
07:00 - 07:59	0	1	3	27	135	159	47	4	3	1	0	0	1	1	0	382
08:00 - 08:59	0	0	9	45	153	158	46	6	1	1	1	0	0	0	0	420
09:00 - 09:59	4	2	16	89	200	101	23	7	2	0	0	0	1	0	1	446
10:00 - 10:59	0	2	7	73	246	127	24	2	1	0	0	0	0	0	0	482
11:00 - 11:59	1	1	8	97	247	164	30	3	0	2	0	0	0	0	0	553
12:00 - 12:59	6	25	27	119	277	121	18	3	3	0	0	0	0	0	0	599
13:00 - 13:59	4	1	8	67	267	177	32	5	1	0	2	0	0	0	1	565
14:00 - 14:59	0	1	11	81	313	257	41	1	0	0	0	0	0	0	2	707
15:00 - 15:59	11	24	29	132	397	264	41	1	0	0	1	0	0	1	0	901
16:00 - 16:59	1	6	24	211	472	188	24	1	0	0	0	0	2	1	0	930
17:00 - 17:59	4	18	50	123	393	264	47	8	2	0	1	1	0	1	0	912
18:00 - 18:59	0	1	10	84	322	270	42	7	0	1	1	0	0	0	1	739
19:00 - 19:59	2	5	8	48	248	219	59	4	5	1	0	0	0	0	1	600
20:00 - 20:59	0	0	4	29	205	173	35	2	0	0	1	0	0	0	0	449
21:00 - 21:59	0	1	8	42	141	94	14	3	0	0	0	0	0	0	0	303
22:00 - 22:59	0	0	1	7	73	62	21	4	0	0	0	0	0	0	0	168
23:00 - 23:59	0	0	0	2	43	45	10	3	1	0	0	0	0	0	0	104
Totals	34	88	224	1302	4269	3111	665	90	30	8	7	1	4	4	7	9844
Percent of Total	0.3	0.9	2.3	13.2	43.4	31.6	6.8	0.9	0.3	0.1	0.1	0.0	0.0	0.0	0.1	100
Percent of AM	0.2	0.2	1.5	12.5	39.0	34.1	9.8	1.7	0.6	0.2	0.0	0.0	0.1	0.0	0.1	100
Percent of PM	0.4	1.2	2.6	13.5	45.2	30.6	5.5	0.6	0.2	0.0	0.1	0.0	0.0	0.0	0.1	100
Standard			5.7 MF				Ten Mile	Pace:	30 to 3	39 MPH			85th P	ercentile		38.9 MPH
	an Speed		34.0 MF		Pe	rcent in	Ten Mile	Pace:		75.0%			450 -			
	an Speec		33.8 MF											ercentile		29.3 MPH
Moc	lal Speec	l:	32.5 MF	чH										ercentile		39.7 MPH
													95th P	ercentile		42.4 MPH

Daily Northbound(B-A) Speeds (MPH)

Study Date: Tuesday, 07/23/2024

Unit ID: SGP13

	5- 14	15- 19	20- 24	25- 29	30- 34	35- 39	40- 44	45- 49	50-	55- 59	60-	65-	70-	75-	80-	
00:00 - 00:59	0	0	0	29	34	39	44	49 1	54 0		64	69	74	79	99	Total
01:00 - 01:59	0	0	0	2	9 11	7	2	0	0		0	0	0	0	0	
02:00 - 02:59	0	0	1	3	12	8		0	0	0	0	0	0	0	0	22
03:00 - 03:59	0	0	0	4	12	29	11	0	0	0	0	0	0	0	0	25
04:00 - 04:59	0		0		97	131	14	1	0	0	0	0	0	0	1	57
05:00 - 05:59	0	0	0	54	334	242	14	0	0	0	0	0	0	0	0	260
06:00 - 06:59	1		9	167	453	153	10	0	0	0	0	0	0	0		646
07:00 - 07:59	'	1	17	154	432	186	21	2	1	1	0	0	0	0	0	794
08:00 - 08:59	1	0	11	134	450	220	13	3	1	1	0	1	0	0		816
09:00 - 09:59	0	0	6	82	408	191	21	2	0	0	1	0	0	0	2	837
10:00 - 10:59	0	0	5	72	353	191	14	3	0	1	1	0	0	0	0	711 640
11:00 - 11:59	0	1	5	73	357	183	18	2	3		0	0	1	0	2	640
12:00 - 12:59	0	9	12	86	398	182	21	2	0	2	0	0	0	0	2	712
13:00 - 13:59	3	3	12	139	339	122	11	1	2	0	0	1	0	0	2	635
14:00 - 14:59	0	2	18	104	317	171	13	3	2	1	1	0	0	0	2	633
15:00 - 15:59	0	1	9	97	350	159	16	1	0		1	0	0	0	3	638
16:00 - 16:59	1	2	6	146	390	145	9	3	0	0	0	1	0	0	1	704
17:00 - 17:59	1	1	6	86	335	175	16	2	1	0	1	0	1	1	0	626
18:00 - 18:59	0	1	3	57	317	152	16	3	0	0	0	1	0	0	0	550
19:00 - 19:59	0	0	0	33	213	121	14	1	0	0	0	1	2	0	1	386
20:00 - 20:59	0	0	0	43	182	79	12	0	0	1	0	0	0	0	1	318
21:00 - 21:59	0	2	3	45	135	67	8	1	1	0	0	0	0	0	0	262
22:00 - 22:59	0	Ő	0	23	98	47	9	1	0	0	0	0	0	0	0	178
23:00 - 23:59	0	1	1	5	44	18	7	0	0	0	0	0	0	0	0	76
Totals	8	26	124	1627	6046	2986	295	32	11	9	5	5	4	1	14	11193
Percent of Total	0.1	0.2	1.1	14.5	54.0	26.7	2.6	0.3	0.1	0.1	0.0	0.0	0.0	0.0	0.1	100
Percent of AM	0.1	0.1	1.0	13.9	53.5	28.3	2.6	0.3	0.1	0.1	0.0	0.0	0.0	0.0	0.1	100
Percent of PM	0.1	0.4	1.2	15.1	54.5	25.1	2.7	0.3	0.1	0.1	0.1	0.1	0.1	0.0	0.2	100
Standard	Deviatior	n:	4.9 MF	PH			Ten Mile	Pace:	30 to 3	39 MPH			85th P	ercentile		37.8 MPH
Mea	an Speed	i:	33.4 MF	۶H	Pe	rcent in	Ten Mile	Pace:		80.7%						
Media	an Speed	ł:	33.2 MF	РΗ									15th P	ercentile	:	29.7 MPH
Mod	al Speed	I:	32.5 MF	РΗ									90th P	ercentile:		38.8 MPH
	• •												95th P	ercentile		39.7 MPH

50 Daily Northbound(B-A) Speeds (MPH)

Study Date: Wednesday, 07/24/2024

Unit ID: SGP13

	5- 14	15- 19	20- 24	25- 29	30- 34	35- 39	40- 44	45- 49	50- 54	55- 59	60- 64	65- 69	70- 74	75- 79	80- 99	Total
00:00 - 00:59	0	0	1	5	14	12	1	0	0	0		0	0	0	0	33
01:00 - 01:59	0	0	0	2	5	7	1	0	0	0	0	0	0	0	0	15
02:00 - 02:59	0	0	0	1	10	11	0	0	0	0	0	0	0	0	0	22
03:00 - 03:59	0	0	1	6	13	24	12	0	0	0	0	0	0	0	0	56
04:00 - 04:59	0	1	0	11	82	134	22	5	0	0	0	0	0	0	0	255
05:00 - 05:59	0	0	2	27	279	284	33	4	0	0	0	0	0	0	0	629
06:00 - 06:59	0	2	6	72	416	286	31	1	0	1	0	0	1	0	1	817
07:00 - 07:59	3	6	14	132	451	228	16	3	0	0	0	0	0	0	1	854
08:00 - 08:59	0	3	9	120	437	193	12	1	0	1	1	0	0	0	1	778
09:00 - 09:59	66	48	46	90	170	76	1	2	1	1	0	0	0	0	2	503
10:00 - 10:59	1	0	0	65	392	139	16	0	0	1	0	0	0	1	0	615
11:00 - 11:59	7	3	15	100	333	153	19	2	0	0	0	0	0	0	0	632
12:00 - 12:59	66	48	23	54	139	38	2	0	1	0	0	1	0	0	0	372
13:00 - 13:59	6	2	7	73	288	96	8	1	0	0	1	0	0	0	1	483
14:00 - 14:59	3	3	12	81	277	196	22	1	2	2	0	0	0	0	0	599
15:00 - 15:59	4	5	12	69	314	194	16	1	0	0	0	2	0	0	0	617
16:00 - 16:59	0	0	5	79	347	168	12	7	2	2	1	0	1	0	1	625
17:00 - 17:59	0	1	2	35	313	238	15	3	2	1	1	0	1	0	0	612
18:00 - 18:59	0	0	3	48	267	202	24	2	1	0	1	1	1	0	0	550
19:00 - 19:59	0	1	1	55	209	157	14	2	0	1	0	0	0	1	0	441
20:00 - 20:59	0	2	2	56	198	97	4	1	1	0	0	0	0	0	0	361
21:00 - 21:59	0	1	8	55	149	41	3	1	0	0	0	0	0	0	0	258
22:00 - 22:59	0	0	1	15	64	36	4	0	0	0	0	0	0	0	0	120
23:00 - 23:59	0	0	0	6	38	25	5	1	0	0	0	0	0	0	0	75
Totals	156	126	170	1257	5205	3035	293	38	10	10	5	4	4	2	7	10322
Percent of Total	1.5	1.2	1.6	12.2	50.4	29.4	2.8	0.4	0.1	0.1	0.0	0.0	0.0	0.0	0.1	100
Percent of AM	1.5	1.2	1.8	12.1	50.0	29.7	3.1	0.3	0.0	0.1	0.0	0.0	0.0	0.0	0.1	100
Percent of PM	1.5	1.2	1.5	12.2	50.9	29.1	2.5	0.4	0.2	0.1	0.1	0.1	0.1	0.0	0.0	100
Standard	Deviation	ו:	5.7 MF	PH			Ten Mile	Pace:	30 to 3	39 MPH			85th P	ercentile:		38.1 MP
Me	an Speed	d:	33.1 MF	PH	Pe	rcent in	Ten Mile	Pace:		79.8%						
Medi	an Speed	1 :	33.3 MF	РΗ										ercentile:		29.4 MP
Мос	dal Speed	1 :	32.5 MF	νН									90th P	ercentile		38.9 MP
													95th P	ercentile:		39.8 MP

TRANSIT INFORMATION

Hudson Demand Response

Attachmentua "Pansit System 11 Riverside Street Nashua NH 02062

11 Riverside Street Nashua, NH 03062 **Phone:** 603-880-0100 **Fax:** 603-821-2042

Nashua Transit System's Hudson Demand Response is an origin to destination transportation service for residents of Hudson, New Hampshire. Please fill out this application and return it to NTS.

Applicant Inform	nation	
Name (Print):		DOB:
Address:		
City/Town:		Zip:
Phone (Primary):		(Secondary):
Email Address: _		
Emergency Cont	tact Information	
Name (Print):		Relationship:
Phone (Primary):		(Secondary):
Email Address: _		
Please select a m	obility aide, if app	licable; □ Walker □ Other:
Will you need as	sistance getting to	the vehicle upon pick-up?
□ Yes	🗆 No	
If you need to tra	avel with a Person	al Care Attendant, please call (603) 880-0100 extension 4.
Signature of App	licant:	Date:
		FOR OFFICE USE ONLY
		s been approved to travel with a PCA: Yes No
	Date:	

ABOUT THE SERVICE

Service Hours

The Hudson Demand Response service runs Monday – Friday. The earliest pick up in Hudson is 8:30-9 a.m., arriving in Nashua at 10 a.m. for the earliest drop-off.

Return times vary. Passengers are asked to call NTS prior to scheduling appointments.

Hudson Demand Response does not run on weekends or the following holidays: New Year's Day, Memorial Day, Independence Day (July 4), Labor Day, Thanksgiving Day and Christmas Day.

Service Area

The Hudson Demand Response service provides transportation within the Town of Hudson and the City of Nashua.

Exact Fare Prices

Fare prices are dependent on both your origin and your destination.

You will be required to pay a fare each way of your trip using exact change.

- Hudson to Hudson \$3.50
- Hudson to Nashua **\$5.50**

Fare prices may be subject to change.

WHO WE ARE

About Us

Nashua Transit System's Hudson Demand Response service is a shared trip, origin to destination, public transportation option for residents of Hudson, NH.

Rides are scheduled on a limited, spaceavailable basis. Priority is given to persons with disabilities and senior citizens needing transportation to non-emergency medical appointments.

Title VI

Nashua Transit System is committed to ensuring that no person is excluded from participation in, or denied the benefits of its transit services on the basis of race, color, or national origin, as protected by Title VI in the Federal Transit Administration (FTA) Circular 4702.1.B.

Relay NH (Spanish): 1-866-479-7569

DEMAND RESPONSE RIDE GUIDE

Residents of Hudson

Nashua Transit System 11 Riverside Street Nashua, NH 03062

July 2024

HOW TO SCHEDULE A TRIP

When to Schedule a Trip

Trips must be scheduled at least two (2) business days in advance. To make your trip reservation, call 603-880-0100 ext. 2., during our office hours: Monday – Friday 8 AM to 4:30 PM.

Reservations are accepted up to two (2) weeks prior to your requested trip.

Information Needed

- Full Name
- Telephone Number
- Date of Trip
- Pick-up address and drop-off address
- Time you would like to arrive and return from your destination
- Whether you use a mobility device (i.e. wheelchair, walker, cane, etc.) or a *service animal.
- Whether a Personal Care Attendant (PCA) or guest will be riding with you.
- Whether you will need any assistance from the driver at your pick up or drop-off location

All NTS vehicles are ADA accessible for wheelchairs, walkers, canes, etc.

ON THE DAY OF PICK UP

Boarding the Vehicle

Be ready at the curb to board the vehicle at the beginning of your 30-minute pick up window, which will be provided to you when scheduling your trip

If assistance is needed getting to the vehicle, and you have told us so, please be ready at the building entrance door that you specified when making your reservation.

If you are running late, contact NTS at 603-880-0100 ext. 2.

Canceling Trips

Call NTS immediately if you no longer require transportation.

Failure to cancel a trip more than two (2) hours before the scheduled pick up time or meet the vehicle within five (5) minutes of the vehicle's arrival is considered a No-Show.

If you miss your vehicle on the first leg of the trip, the remainder of your trips for the day are canceled. If you still need transportation home, call dispatch at 603-880-0100 ext. 2.

Attachment "D" RIDING WITH NTS

Carry-Ons

NTS has a two (2) bag limit on all parcels. You must be able to carry your packages and control them at all times while in the vehicle. Drivers are not permitted to carry your bags or other property.

Packages or parcels may not obstruct aisles and doorways or prevent seats from being used.

Traveling with Someone

Guests are welcome to ride with you on a space available basis. An additional fare equal to what you pay is required. You and your guest must have the same origin, destination and pick up times.

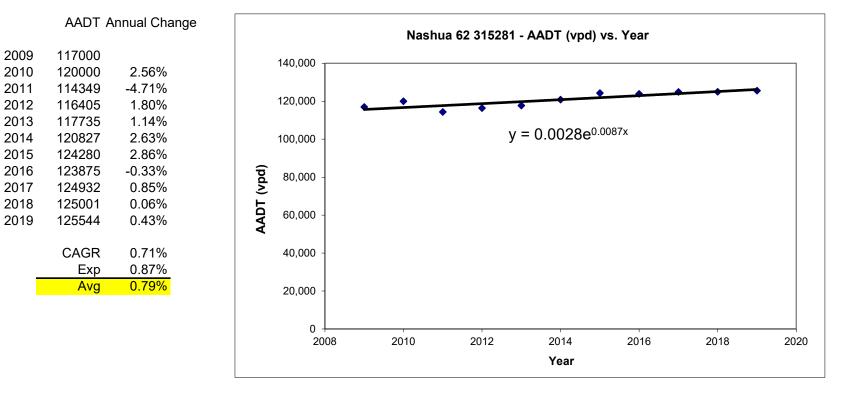
If you have a registered personal care attendant (PCA) with NTS, they may accompany you any time at no additional charge. To travel with a PCA, you must complete the Personal Care Attendant Request Form.

*Service Animals

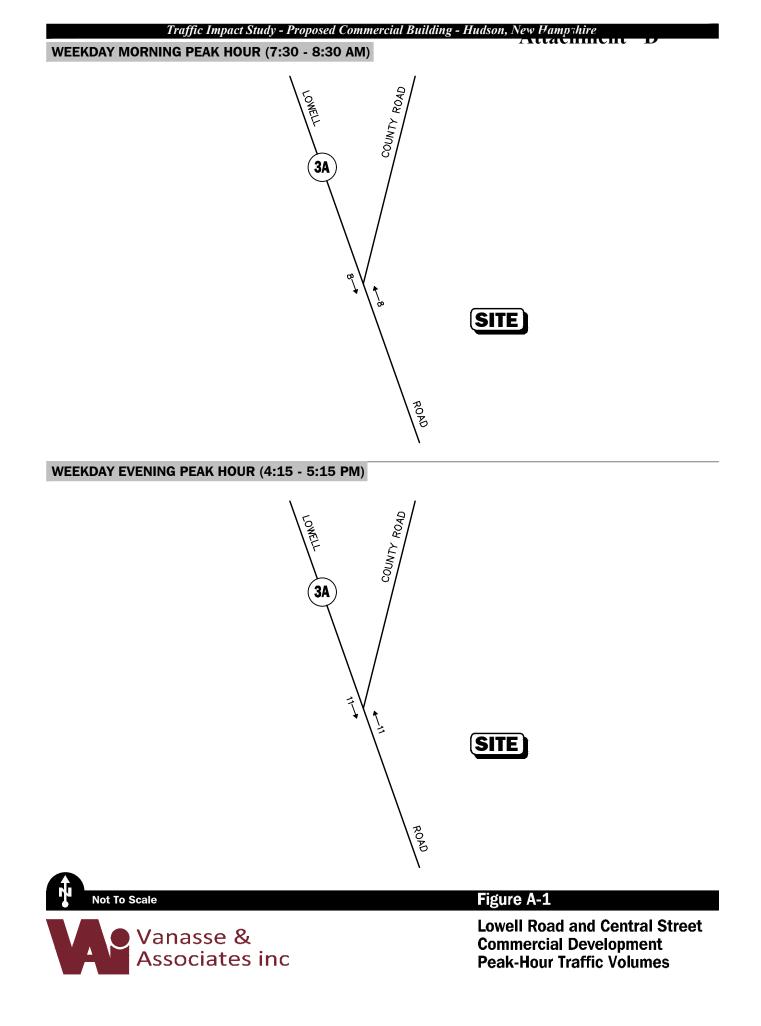
A service animal is a guide dog, signal dog or other animal trained to work or perform tasks for a person with a disability. Pets and emotional support animals are not allowed on NTS vehicles. (eCFR:: 49 CFR 37.167) CRASHES

Attachment "D"

Accident Study Lowell Road at County Lane

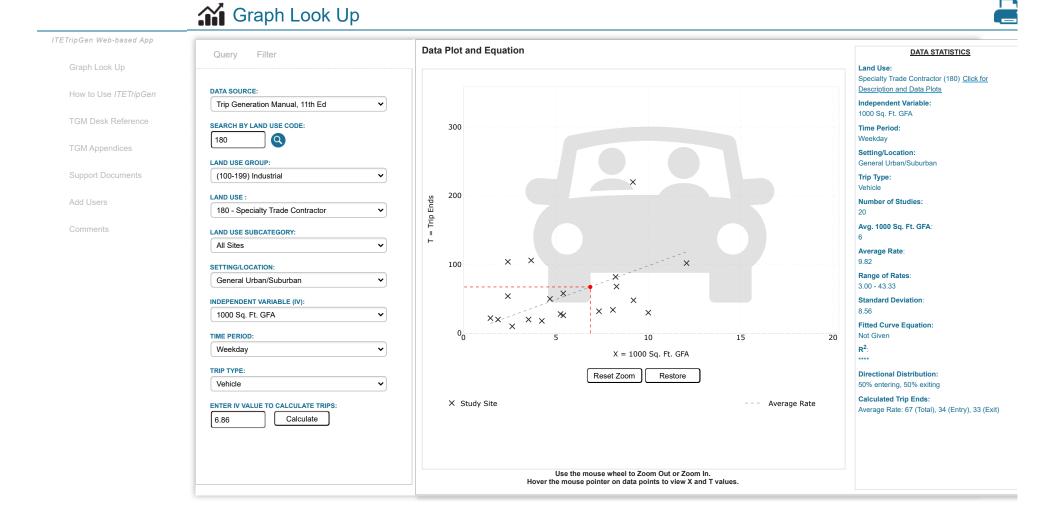

Note: this analysis includes intersections of Dana Crt and Atwood Ave which can effect the intersections at both ends of County Lane January 1, 2019 - August 1, 2024

Location	AC#	Date	Day	Time	Veh's	Injury	# Injured	
Lowell @ County	19-81-AC	2/14/2019	Thurs	830	2	No		Following to closely
Lowell @ County	19-95-AC	2/26/2019	Tues	1503	2	No		Distracted driver
Lowell @ County	19-140-AC	3/24/2019	Sun	1232	3	Yes	2	Distracted driver
Lowell @ County	19-174-AC	4/14/2019	Sun	1815	2	No		Failure to yield
Lowell @ County	19-247-AC	5/27/2019	Mon	1457	2	Yes	1	Failure to yield
Lowell @ Atwood/Cour	20-3-AC	1/3/2020	Fri	1613	2	No		Illegal Passing
Lowell @ County	20-52-AC	1/24/2020	Fri	1356	2	Yes	1	Failure to yield
Lowell @ County	20-271-AC	7/30/2020	Thurs	1201	2	No		Distracted driver
Lowell @ County	20-292-AC	8/13/2020	Thurs	1815	2	No		Failure to yield
Lowell @ County	20-397-AC	10/27/2020	Tues	1710	2	No		Distracted driver
Lowell @ County	20-422-AC	11/4/2020	Wed	1718	1	No		Swerving to avoid collision
Lowell @ County	20-434-AC	11/10/2020	Tues	1522	2	No		Failure to yield
Lowell @ County	21-133-AC	3/31/2021	Wed	1728	2	No		Failure to yield
Lowell @ County	21-287-AC	6/25/2021	Fri	1515	2	No		Stopping/Standing/Parking & Distracted drive
Lowell @ Dana/County	21-359-AC	7/19/2021	Fri	323	2	No		Failure to yield
Lowell @ County	21-533-AC	11/22/2021	Mon	1643	2	No		Failure to yield
Lowell @ County	22-14-AC	1/7/2022	Fri	634	2	Yes	1	Veh/Bicyclist. Bicyclist in center lane/Weather
Lowell @ County	22-306-AC	7/4/2022	Mon	1332	2	Yes	1	Failure to yield
Lowell @ County	22-316-AC	7/7/2022	Thurs	1337	2	No		Medical Emergency
Lowell @ County	22-393-AC	8/26/2022	Fri	1901	2	No		Failure to yield
Lowell @ County	22-400-AC	8/31/2022	Wed	1738	2	No		Failure to yield
Lowell @ County	22-500-AC	10/27/2022	Thurs	754	2	No		Failure to yield
Lowell @ County	22-519-AC	11/9/2022	Wed	906	2	No		Failure to yield
Lowell @ County	23-40-AC	1/20/2023	Fri	1721	2	No		Improper passing & Failure to yield
Lowell @ County	23-522-AC	11/10/2023	Fri	1738	2	No		Failure to yield
Lowell @ County	23-591-AC	12/26/2023	Tues	1251	2	No		Failure to yield
Lowell @ County	24-63-AC	1/31/2024	Wed	1711	3	No		Following to closely
Lowell @ County	24-115-AC	3/8/2024	Fri	1809	2	No		Failure to yield
Lowell @ County	24-209-AC	5/9/2024	Thurs	1440	2	No		Failure to yield
Lowell @ County	24-220-AC	5/15/2024	Wed	807	3	Yes	1	Following to closely


GENERAL BACKGROUND TRAFFIC GROWTH

Attachment "D"

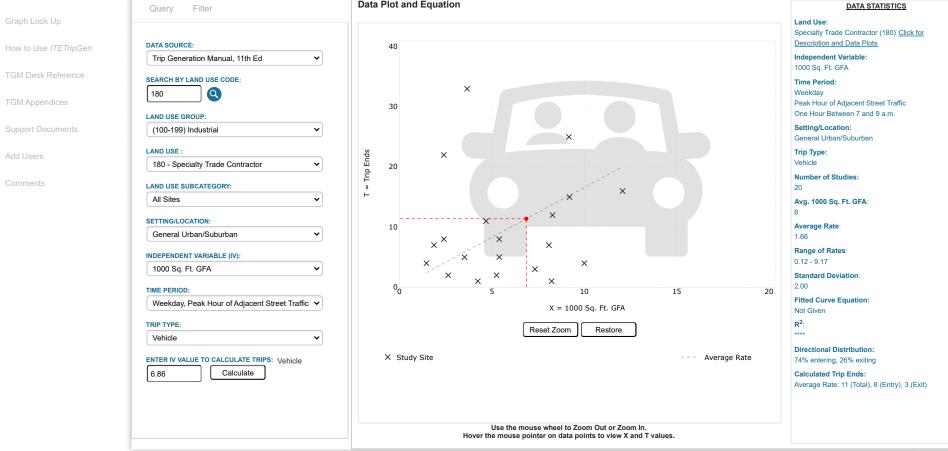
Station 62315281 Nashua - FEET At the Canal Bridge Exits 5-6 Group 3 Region E FC 12


BACKGROUND DEVELOPMENT TRAFFIC-VOLUME NETWORKS

TRIP-GENERATION CALCULATIONS

ITETripGen Web-based App

Add-ons to do more


Try OTISS Pro

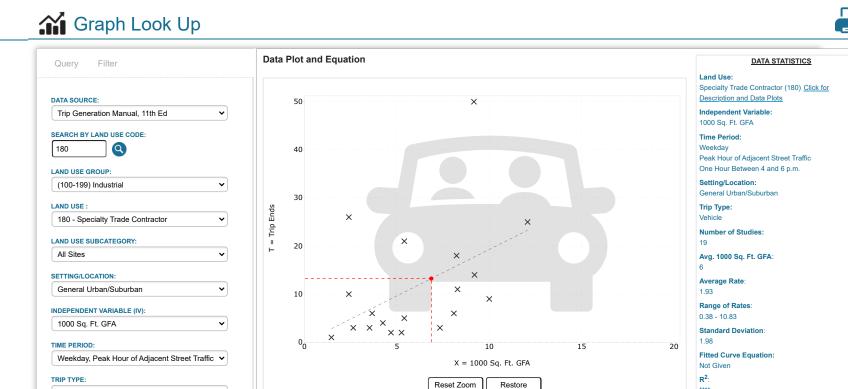
ITETripGen Web-based App

ITETripGen Web-based App

Add-ons to do more

Try OTISS Pr

ITETripGen Web-based App


How to Use ITETripGen

TGM Desk Reference

Add Users

ITETripGen Web-based App

Use the mouse wheel to Zoom Out or Zoom In. Hover the mouse pointer on data points to view X and T values.

**** Directional Distribution: 32% entering, 68% exiting

Calculated Trip Ends: Average Rate: 13 (Total), 4 (Entry), 9 (Exit)

Add-ons to do more

Try OTISS Pro

Vehicle

6.86

ENTER IV VALUE TO CALCULATE TRIPS:

Calculate

~

X Study Site

Vehicle

--- Average Rate

CAPACITY ANALYSIS WORKSHEETS

2024 Existing 2025 No-Build 2025 Opening Year Build 2035 No-Build 2035 Build 2024 Existing

Attachment "D"

08/20/2024

Internetien						
Intersection						
Int Delay, s/veh	10.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		et		1	1
Traffic Vol, veh/h	103	5	494	84	4	979
Future Vol, veh/h	103	5	494	84	4	979
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	94	94	95	95
Heavy Vehicles, %	1	0	1	1	0	1
Mvmt Flow	116	6	526	89	4	1031
N 4 = i = #/N 4im = #	NA:		1-:		4-10	
Major/Minor	Minor1		Major1		Major2	

Major/Minor	Minor1	N	Aajor1	[Major2		
Conflicting Flow All	1609	570	0	0	615	0	
Stage 1	570	-	-	-	-	-	
Stage 2	1039	-	-	-	-	-	
Critical Hdwy	6.41	6.2	-	-	4.1	-	
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41	-	-	-	-	-	
Follow-up Hdwy	3.509	3.3	-	-	2.2	-	
Pot Cap-1 Maneuver	116	525	-	-	975	-	
Stage 1	568	-	-	-	-	-	
Stage 2	342	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver		525	-	-	975	-	
Mov Cap-2 Maneuver		-	-	-	-	-	
Stage 1	568	-	-	-	-	-	
Stage 2	341	-	-	-	-	-	
Approach	WB		NB		SB		
HCM Control Delay, s	s/∳55.58		0		0.04		
HCM LOS	F						
Minor Lane/Major Mvi	mt	NBT	NBRW	BLn1	SBL	SBT	
Capacity (veh/h)		-	-	120	975	-	
HCM Lane V/C Ratio		-	- '		0.004	-	
HCM Control Delay (s	s/veh)	-		155.6	8.7	-	
HCM Lane LOS	- /	-	-	F	A	-	
HCM 95th %tile Q(vel	h)	-	-	6.9	0	-	
	,						

_	_	-	_	-
A I		1		
NI	\sim	т	\frown	С
IN	U	L	⊂	

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

Attachment "D"

08/20/2024

L. L						
Intersection						
Int Delay, s/veh	3.9					
- M			NDT		0.01	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	- Y		- 1 2			↑
Traffic Vol, veh/h	45	7	963	260	12	823
Future Vol, veh/h	45	7	963	260	12	823
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	96	96	94	94	96	96
Heavy Vehicles, %	0	0	2	1	0	2
Mvmt Flow	47	7	1024	277	13	857

Major/Minor	Minor1	Ν	lajor1	Ν	/lajor2	
Conflicting Flow All	2045	1163	0	0	1301	0
Stage 1	1163	-	-	-	-	-
Stage 2	882	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver		239	-	-	539	-
Stage 1	300	-	-	-	-	-
Stage 2	408	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	r 61	239	-	-	539	-
Mov Cap-2 Maneuve	r 61	-	-	-	-	-
Stage 1	300	-	-	-	-	-
Stage 2	398	-	-	-	-	-

Approach WB	NB	SB
HCM Control Delay, s/\$58.09	0	0.17
HCM LOS F		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	- 68	539	-
HCM Lane V/C Ratio	-	- 0.799	0.023	-
HCM Control Delay (s/veh)	-	- 158.1	11.8	-
HCM Lane LOS	-	- F	В	-
HCM 95th %tile Q(veh)	-	- 3.7	0.1	-

2025 No-Build

08/20/2024

Intersection						
Intersection						
Int Delay, s/veh	12.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ef -		ľ	•
Traffic Vol, veh/h	104	5	507	85	4	997
Future Vol, veh/h	104	5	507	85	4	997
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storag	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	94	94	95	95
Heavy Vehicles, %	1	0	1	1	0	1
Mvmt Flow	117	6	539	90	4	1049
Major/Minor	Minor1	٨	laior1	Ν	laior2	

Conflicting Flow All 1642 585 0 0 630 0 Stage 1 585 - - - - - Stage 2 1058 - - - - - Critical Hdwy Stg 1 5.41 - - - - - Critical Hdwy Stg 2 5.41 - - - - - Follow-up Hdwy 3.509 3.3 - 2.2 - - Follow-up Hdwy 3.509 3.3 - 2.2 - Pot Cap-1 Maneuver ~110 515 - 962 - Mov Cap-2 Maneuver ~110 - - - - Mov Cap-2 Maneuver ~110 - - - - Stage 1 559 - - - - - Stage 1 559 - - - - - Stage 1 559 - - - - - Stage 2 334 - - <t< th=""><th>Major/Minor</th><th>Minor1</th><th>Ν</th><th>/lajor1</th><th>N</th><th>Major2</th><th></th><th></th><th></th><th></th></t<>	Major/Minor	Minor1	Ν	/lajor1	N	Major2				
Stage 2 1058 -	Conflicting Flow All	1642	585	0	0	630	0			
Critical Hdwy 6.41 6.2 - - 4.1 - Critical Hdwy Stg 1 5.41 - - - - Critical Hdwy Stg 2 5.41 - - - - Follow-up Hdwy 3.509 3.3 - 2.2 - Pot Cap-1 Maneuver ~110 515 - 962 - Stage 1 559 - - - - Nov Cap-1 Maneuver ~110 515 - 962 - Mov Cap-2 Maneuver ~110 515 - 962 - Mov Cap-2 Maneuver ~110 - - - - Stage 1 559 - - - - Stage 1 559 - - - - Stage 2 334 - - - - Stage 2 334 - - - - Minor Lane/Major Mvmt NBT NBRWBLN1 SBL SBT - Capacity (veh/h) - 114	Stage 1	585	-	-	-	-	-			
Critical Hdwy Stg 1 5.41 - - - Critical Hdwy Stg 2 5.41 - - - Follow-up Hdwy 3.509 3.3 - 2.2 - Pot Cap-1 Maneuver ~110 515 - 962 - Stage 1 559 - - - - Stage 2 335 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver ~110 515 - 962 - Mov Cap-2 Maneuver ~110 515 - 962 - Mov Cap-2 Maneuver ~110 - - - - Stage 1 559 - - - - - Stage 2 334 - - - - - - Stage 1 559 - - - - - - - Stage 2 334 - - - - - - Minor Lane /Majo	Stage 2	1058	-	-	-	-	-			
Critical Hdwy Stg 2 5.41 - <td>Critical Hdwy</td> <td>6.41</td> <td>6.2</td> <td>-</td> <td>-</td> <td>4.1</td> <td>-</td> <td></td> <td></td> <td></td>	Critical Hdwy	6.41	6.2	-	-	4.1	-			
Follow-up Hdwy 3.509 3.3 - 2.2 - Pot Cap-1 Maneuver ~ 110 515 - 962 - Stage 1 559 - - - - Stage 2 335 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver ~ 110 515 - 962 - Mov Cap-2 Maneuver ~ 110 515 - 962 - Mov Cap-2 Maneuver ~ 110 - - - - Stage 1 559 - - - - - Stage 1 559 - - - - - Stage 2 334 - - - - - Stage 2 334 - - - - - Approach WB NB SB - - - - Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT - - -	Critical Hdwy Stg 1	5.41	-	-	-	-	-			
Pot Cap-1 Maneuver ~ 110 515 962 - Stage 1 559 Platoon blocked, % Mov Cap-1 Maneuver ~ 110 515 - 962 - Mov Cap-2 Maneuver ~ 110 Stage 1 559 Stage 2 334 Stage 2 334 Munor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - 1114 962 - HCM Lane V/C Ratio 1073 0.004 - HCM Lane V/C Ratio 177.6 8.8 - HCM Lane LOS F A - HCM 95th %tile Q(veh) - 7.3 0 - Notes	Critical Hdwy Stg 2	5.41		-	-		-			
Stage 1 559 - - - - Stage 2 335 - - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver ~ 110 515 - 962 - Mov Cap-2 Maneuver ~ 110 - - - - Stage 1 559 - - - - Stage 2 334 - - - - Stage 2 334 - - - - Approach WB NB SB - - HCM Control Delay, s/¥77.61 0 0.03 - - Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT - Capacity (veh/h) - 1.1073 0.004 - - HCM Lane V/C Ratio - 1.073 0.004 - - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - 7.3 0 - Notes - </td <td>Follow-up Hdwy</td> <td>3.509</td> <td>3.3</td> <td>-</td> <td>-</td> <td>2.2</td> <td>-</td> <td></td> <td></td> <td></td>	Follow-up Hdwy	3.509	3.3	-	-	2.2	-			
Stage 2 335 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver ~ 110 515 - 962 - Mov Cap-2 Maneuver ~ 110 - - - - Stage 1 559 - - - - Stage 2 334 - - - - Approach WB NB SB - - HCM Control Delay, s/W77.61 0 0.03 - - Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - 1.073 0.004 - - HCM Lane V/C Ratio - 1.073 0.004 - - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - 7.3 0 - Notes - - 7.3 0 -	Pot Cap-1 Maneuver	~ 110	515	-	-	962	-			
Platon blocked, %	Stage 1	559	-	-	-	-	-			
Mov Cap-1 Maneuver ~ 110 515 - 962 - Mov Cap-2 Maneuver ~ 110 - - - - Stage 1 559 - - - - Stage 2 334 - - - - Approach WB NB SB - - HCM Control Delay, s/v77.61 0 0.03 - - Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT - Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - 1.073 0.004 - HCM Control Delay (s/veh) - 177.6 8.8 - HCM Lane LOS - F A - HCM 95th %tile Q(veh) - 7.3 0 - Notes - 7.3 0 - -	Stage 2	335	-	-	-	-	-			
Mov Cap-2 Maneuver ~ 110 - </td <td>,</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	,			-	-		-			
Stage 1 559 -	Mov Cap-1 Maneuver	~ 110	515	-	-	962	-			
Stage 2 334 -	Mov Cap-2 Maneuver	~ 110	-	-	-	-	-			
Approach WB NB SB HCM Control Delay, s/\v077.61 0 0.03 HCM LOS F Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM Sth % tile Q(veh) - - 7.3 0 -	Stage 1	559	-	-	-	-	-			
HCM Control Delay, s/#77.61 0 0.03 HCM LOS F Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - - 7.3 0 -	Stage 2	334	-	-	-	-	-			
HCM Control Delay, s/\v77.61 0 0.03 HCM LOS F Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - - 7.3 0 -										
HCM Control Delay, s/\v77.61 0 0.03 HCM LOS F Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - - 7.3 0 -	Approach	WB		NB		SB				
HCM LOS F Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - F A - HCM 95th %tile Q(veh) - 7.3 0 -		/\$77.61				0.03				
Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SBT Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - - 7.3 0 -				•						
Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - - 7.3 0 - Notes - - 7.3 0 -										
Capacity (veh/h) - - 114 962 - HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - - 7.3 0 -	Minor Lono/Major Myn	nt	NDT		l n1	CDI	CDT			
HCM Lane V/C Ratio - - 1.073 0.004 - HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - - 7.3 0 - Notes - - 7.3 0 -		IIL	INDT							
HCM Control Delay (s/veh) - - 177.6 8.8 - HCM Lane LOS - - F A - HCM 95th %tile Q(veh) - - 7.3 0 - Notes - - 7.3 0 -			-							
HCM Lane LOS F A - HCM 95th %tile Q(veh) 7.3 0 - Notes		(vob)	-							
HCM 95th %tile Q(veh) 7.3 0 - Notes		ven)		- 1						
Notes			-	-			-			
		1)	-	-	1.3	0	-			
~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon	Notes									
	~: Volume exceeds ca	pacity	\$: De	lay excee	eds 30	00s	+: Compu	tation Not Defined	*: All major volume in platoon	

08/20/2024

Intersection						
Int Delay, s/veh	4.3					
-			NDT		0.01	0.D.T
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		4		- ሽ	↑
Traffic Vol, veh/h	45	7	984	263	12	842
Future Vol, veh/h	45	7	984	263	12	842
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	96	96	94	94	96	96
Heavy Vehicles, %	0	0	2	1	0	2
Mvmt Flow	47	7	1047	280	13	877

Major/Minor	Minor1	Ν	lajor1	Ν	/lajor2	
Conflicting Flow All	2089	1187	0	0	1327	0
Stage 1	1187	-	-	-	-	-
Stage 2	902	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	59	232	-	-	527	-
Stage 1	292	-	-	-	-	-
Stage 2	399	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	r 57	232	-	-	527	-
Mov Cap-2 Maneuve	r 57	-	-	-	-	-
Stage 1	292	-	-	-	-	-
Stage 2	390	-	-	-	-	-

Minor Lane/Major Mvmt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)	-	-	64	527	-
HCM Lane V/C Ratio	-	-	0.85	0.024	-
HCM Control Delay (s/veh)	-	-	178.6	12	-
HCM Lane LOS	-	-	F	В	-
HCM 95th %tile Q(veh)	-	-	3.9	0.1	-

2025 Opening Year Build

Intersection							
Int Delay, s/veh	12.1						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	•
Lane Configurations	Y		4		1	•	
Traffic Vol, veh/h	104	5	507	85	4	997	,
Future Vol, veh/h	104	5	507	85	4	997	,
Conflicting Peds, #/hi	r 0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free)
RT Channelized	-	None	-	None	-	None)
Storage Length	0	-	-	-	0	-	
Veh in Median Storag	ae, # 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	89	89	94	94	95	95	;
Heavy Vehicles, %	1	0	1	1	0	1	
Mvmt Flow	117	6	539	90	4	1049)
N A - ' /N A'	N#		4		4		
Major/Minor	Minor1		Major1		/lajor2		
Conflicting Flow All	1642	585	0	0	630	0	1
Stage 1	585	-	-	-	-	-	-
Stage 2	1058	-	-	-	-	-	•
Critical Hdwy	6.41	6.2	-	-	4.1	-	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-	
Critical Hdwy Stg 2	5.41						

Stage 2	334	-	-	-	-	-			
Approach	WB		NB		SB				
HCM Control Delay, s/			0	0	.03		 	 	

-

-

962

-

-

2.2

-

_

-

-

-

-

-

-

-

-962

-

-

-

-

-

_

HCM LOS F

Mov Cap-1 Maneuver ~ 110

Mov Cap-2 Maneuver ~ 110

Follow-up Hdwy

Pot Cap-1 Maneuver

. Stage 1

Stage 2

Platoon blocked, %

Stage 1

3.3

515

-

515

-

-

-

3.509

~ 110

559

335

559

-

-

-

-

-

-

-

-

Minor Long (Major Maynet	NDT		-1 001	ОРТ		
Minor Lane/Major Mvmt	NBT	NBRWBL	n1 SBL	SBT		
Capacity (veh/h)	-	- 1	14 962	-		
HCM Lane V/C Ratio	-	- 1.0	73 0.004	-		
HCM Control Delay (s/veh)	-	- 177	.6 8.8	-		
HCM Lane LOS	-	-	F A	-		
HCM 95th %tile Q(veh)	-	- 7	'.3 0	-		
Notes						
~: Volume exceeds capacity	\$: De	lay exceed	s 300s	+: Com	outation Not Defined	*: All major volume in platoon

Intersection

Int Delay, s/veh	0						
Movement	WBL	WBR	NBT	NBR	SBL	SBT	•
Lane Configurations		1	et -			1	
Traffic Vol, veh/h	0	0	592	8	0	1101	I
Future Vol, veh/h	0	0	592	8	0	1101	I
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Stop	Stop	Free	Free	Free	Free	;
RT Channelized	-	None	-	None	-	None	,
Storage Length	-	0	-	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0)
Grade, %	0	-	0	-	-	0)
Peak Hour Factor	92	92	92	92	92	92	2
Heavy Vehicles, %	2	2	2	2	2	2)
Mvmt Flow	0	0	643	9	0	1197	'

Major/Minor	Minor1	Ν	1ajor1	Ма	ajor2	
Conflicting Flow All	-	648	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.318	-	-	-	-
Pot Cap-1 Maneuver	0	470	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		470	-	-	-	-
Mov Cap-2 Maneuver	· -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
A					00	

Approach	WB	NB	SB	
HCM Control Delay, s/v	0	0	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT	NBRWE	BLn1	SBT
Capacity (veh/h)	-	-	-	-
HCM Lane V/C Ratio	-	-	-	-
HCM Control Delay (s/veh)	-	-	0	-
HCM Lane LOS	-	-	А	-
HCM 95th %tile Q(veh)	-	-	-	-

11/22/2024

Intersection							
Int Delay, s/veh	0.1						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	ł
Lane Configurations	↑			1		1	
Traffic Vol, veh/h	89	0	0	109	0	3	,
Future Vol, veh/h	89	0	0	109	0	3	5
Conflicting Peds, #/hr	0	0	0	0	0	0	j
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	,
Storage Length	-	-	-	-	-	0)
Veh in Median Storage	, # 0	-	-	0	0	-	
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	92	92	92	92	92	92	ļ
Heavy Vehicles, %	2	2	2	2	2	2	,
Mvmt Flow	97	0	0	118	0	3	5

Major/Minor	Major	1 N	/lajor2	Ν	/linor1	
Conflicting Flow All) -	-	-	-	97
Stage 1			-	-	-	-
Stage 2			-	-	-	-
Critical Hdwy			-	-	-	6.22
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	-	-
Follow-up Hdwy			-	-	-	3.318
Pot Cap-1 Maneuver		- 0	0	-	0	960
Stage 1		- 0	0	-	0	-
Stage 2		- 0	0	-	0	-
Platoon blocked, %		-		-		
Mov Cap-1 Maneuver			-	-	-	960
Mov Cap-2 Maneuver			-	-	-	-
Stage 1			-	-	-	-
Stage 2			-	-	-	-
Approach	EE	3	WB		NB	
HCM Control Delay, s	/v ()	0		8.76	
HCM LOS					А	
Minor Lane/Major Mvr	nt	NBLn1	EBT	WBT		
Capacity (veh/h)		960	_	_		
HCM Lane V/C Ratio		0.003	-	-		
HCM Control Delay (s	/veh)	8.8	-	-		
HCM Lane LOS	/	A	-	-		

11/22/2024

Intersection						
Int Delay, s/veh	4.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		ef –		- ሽ	↑
Traffic Vol, veh/h	45	7	984	263	12	842
Future Vol, veh/h	45	7	984	263	12	842
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	96	96	94	94	96	96
Heavy Vehicles, %	1	0	1	1	0	1
Mvmt Flow	47	7	1047	280	13	877

Major/Minor	Minor1	Ν	1ajor1	Ν	/lajor2	
Conflicting Flow All	2089	1187	0	0	1327	0
Stage 1	1187	-	-	-	-	-
Stage 2	902	-	-	-	-	-
Critical Hdwy	6.41	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	58	232	-	-	527	-
Stage 1	291	-	-	-	-	-
Stage 2	398	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	57	232	-	-	527	-
Mov Cap-2 Maneuver	57	-	-	-	-	-
Stage 1	291	-	-	-	-	-
Stage 2	388	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay	y, s/ ∜ 80.81	0	0.17
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRV	/BLn1	SBL	SBT
Capacity (veh/h)	-	-	63	527	-
HCM Lane V/C Ratio	-	-	0.855	0.024	-
HCM Control Delay (s/veh)	-	-	180.8	12	-
HCM Lane LOS	-	-	F	В	-
HCM 95th %tile Q(veh)	-	-	4	0.1	-

Intersection

Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	1			1
Traffic Vol, veh/h	0	0	1247	4	0	887
Future Vol, veh/h	0	0	1247	4	0	887
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	1355	4	0	964

Major/Minor	Minor1	Ν	lajor1	Ma	ajor2	
Conflicting Flow All	-	1358	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.318	-	-	-	-
Pot Cap-1 Maneuver	0	182	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	r -	182	-	-	-	-
Mov Cap-2 Maneuver	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
A			ND		00	

Approach	WB	NB	SB	
HCM Control Delay, s/v	0	0	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT	NBRWE	3Ln1	SBT
Capacity (veh/h)	-	-	-	-
HCM Lane V/C Ratio	-	-	-	-
HCM Control Delay (s/veh)	-	-	0	-
HCM Lane LOS	-	-	А	-
HCM 95th %tile Q(veh)	-	-	-	-

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑			↑		1
Traffic Vol, veh/h	52	0	0	275	0	9
Future Vol, veh/h	52	0	0	275	0	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	57	0	0	299	0	10

Major/Minor	Major1	Ν	/lajor2	М	inor1	
Conflicting Flow All	0		-	-	-	57
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-		-	-		3.318
Pot Cap-1 Maneuver	-	0	0	-	0	1010
Stage 1	-	0	0	-	0	-
Stage 2	-	0	0	-	0	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver		-	-	-	-	1010
Mov Cap-2 Maneuver	· -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s			0		8.6	
HCM LOS			Ū		A	
					,,	
Minor Lane/Major Mvr	nt	NBLn1	EBT	WBT		
Capacity (veh/h)		1010	-	-		
HCM Lane V/C Ratio		0.01	-	-		
HCM Control Delay (s	/veh)	8.6	-	-		

HUW Lane V/C Ratio	0.01	-	-
HCM Control Delay (s/veh)	8.6	-	-
HCM Lane LOS	A	-	-
HCM 95th %tile Q(veh)	0	-	-

2035 No-Build

08/20/2024

Intersection						
Int Delay, s/veh	24.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		ŧ.		3	•
Traffic Vol, veh/h	115	6	559	94	4	1100
Future Vol, veh/h	115	6	559	94	4	1100
Conflicting Peds, #/h	r 0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-		-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storag	ge,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	94	94	95	95
Heavy Vehicles, %	1	0	1	1	0	1
Mvmt Flow	129	7	595	100	4	1158
Major/Minor	Minor1	١	Major1	M	Major2	
Conflicting Flow All	1811	645	0	0	695	0
Stage 1	645	-	-	-	-	-
Stage 2	1166	-	-	-	-	-
Critical Hdwy	641	62	-	_	41	-

Critical Hdwy	6.41	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	~ 87	476	-	-	910	-
Stage 1	524	-	-	-	-	-
Stage 2	298	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	~ 86	476	-	-	910	-
Mov Cap-2 Maneuver	~ 86	-	-	-	-	-
Stage 1	524	-	-	-	-	-
Stage 2	296	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, \$/			0		0.03	
HCM LOS	500.02 F		0		0.00	
Minor Lane/Major Mvm	nt	NBT	NBRWE	3Ln1	SBL	SBT
Capacity (veh/h)		-	-	90	910	-
HCM Lane V/C Ratio		-	- 1	.508	0.005	-
HCM Control Delay (s/	/veh)	-	-\$ 3	59.6	9	-
HCM Lane LOS		-	-	F	А	-
HCM 95th %tile Q(veh)	-	-	10.6	0	-
Natao						

Notes

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

2035 Build

11/22/2024

Intersection						
Int Delay, s/veh	24.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰Y		et		1	•
Traffic Vol, veh/h	115	6	559	94	4	1100
Future Vol, veh/h	115	6	559	94	4	1100
Conflicting Peds, #/h	r 0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storag	ge, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	89	89	94	94	95	95
Heavy Vehicles, %	1	0	1	1	0	1
Mvmt Flow	129	7	595	100	4	1158
Major/Minor	Minor1	ľ	Major1	Ν	Major2	
Conflicting Flow All	1811	645	0	0	695	0
Stage 1	645					

Conflicting Flow All	1811	645	0	0 695	0
Stage 1	645	-	-		-
Stage 2	1166	-	-		-
Critical Hdwy	6.41	6.2	-	- 4.1	-
Critical Hdwy Stg 1	5.41	-	-		-
Critical Hdwy Stg 2	5.41	-	-		-
Follow-up Hdwy	3.509	3.3	-	- 2.2	-
Pot Cap-1 Maneuver	~ 87	476	-	- 910	-
Stage 1	524	-	-		-
Stage 2	298	-	-		-
Platoon blocked, %			-	-	-
Mov Cap-1 Maneuver	~ 86	476	-	- 910	-
Mov Cap-2 Maneuver	~ 86	-	-		-
Stage 1	524	-	-		-
Stage 2	296	-	-		-
Approach	WB		NB	SB	
Approach					
HCM Control Delay, \$/			0	0.03	
HCM LOS	F				
Minor Lane/Major Mvm	nt	NBT	NBRWBLn	1 SBL	SBT
Capacity (veh/h)		-	- 9	0 910	-
HCM Lane V/C Ratio		-	- 1.50	8 0.005	-
HCM Control Delay (s/	/veh)	-	-\$ 359.	69	-
HCM Lane LOS		-		F A	-
HCM 95th %tile Q(veh)	-	- 10.	6 0	-
`````					

Notes

~: Volume exceeds capacity \$: Dela

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

						e * 1			
Ir	11/		· C	Δ	$\mathbf{r}$	ŧП	$\sim$	n	
ш		er	э	┏	L	u	U		

Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	ef 👘			1
Traffic Vol, veh/h	0	0	653	8	0	1215
Future Vol, veh/h	0	0	653	8	0	1215
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage,	# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	710	9	0	1321

Major/Minor	Minor1	Ν	1ajor1	Ма	ijor2	
Conflicting Flow All	-	714	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	-	-
Pot Cap-1 Maneuver	0	431	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve		431	-	-	-	-
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Anna a ah			ND		CD	

Approach	WB	NB	SB	
HCM Control Delay, s/v	0	0	0	
HCM LOS	А			

Minor Lane/Major Mvmt	NBT	NBRWE	3Ln1	SBT
Capacity (veh/h)	-	-	-	-
HCM Lane V/C Ratio	-	-	-	-
HCM Control Delay (s/veh)	-	-	0	-
HCM Lane LOS	-	-	А	-
HCM 95th %tile Q(veh)	-	-	-	-

11/22/2024

Intersection						
Int Delay, s/veh	0.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<b>↑</b>			↑		1
Traffic Vol, veh/h	98	0	0	121	0	3
Future Vol, veh/h	98	0	0	121	0	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	107	0	0	132	0	3

Major/Minor	Major	1 N	/lajor2	Ν	/linor1	
Conflicting Flow All		- C	-	-	-	107
Stage 1			-	-	-	-
Stage 2			-	-	-	-
Critical Hdwy			-	-	-	6.22
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	-	-
Follow-up Hdwy			-	-		3.318
Pot Cap-1 Maneuver		- 0	0	-	0	948
Stage 1		- 0	0	-	0	-
Stage 2		- 0	0	-	0	-
Platoon blocked, %		-		-		
Mov Cap-1 Maneuver			-	-	-	948
Mov Cap-2 Maneuver			-	-	-	-
Stage 1			-	-	-	-
Stage 2			-	-	-	-
Approach	E	3	WB		NB	
HCM Control Delay, s	/v (	C	0		8.81	
HCM LOS					А	
Minor Lane/Major Mvr	nt	NBLn1	EBT	WBT		
· · · · ·	m					
Capacity (veh/h)		948	-	-		
HCM Lane V/C Ratio	/v.e.b.)	0.003	-	-		
HCM Control Delay (s	/ven)	8.8	-	-		
HCM Lane LOS	.)	A 0	-	-		
HCM 95th %tile Q(veh	I)	0	-	-		

11/22/2024

Intersection						
Int Delay, s/veh	9.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		4Î		۲	1
Traffic Vol, veh/h	50	8	1085	290	13	929
Future Vol, veh/h	50	8	1085	290	13	929
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	0	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	96	96	94	94	96	96
Heavy Vehicles, %	1	0	1	1	0	1
Mvmt Flow	52	8	1154	309	14	968
Major/Minor	Minor1	Ν	Major1	1	Major2	
Conflicting Flow All	2303	1309	0	0	1463	0
Stage 1	1309	-	-	-	-	-
Stage 2	995	-	-	-	-	-
Critical Hdwy	6.41	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.41	-	-	-	-	-
Critical Hdwy Stg 2	5.41	-	-	-	-	-
Follow-up Hdwy	3.509	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	~ 43	197	-	-	468	-
Stage 1	254	-	-	-	-	-
Stage 2	359	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	~ 41	197	-	-	468	-
Mov Cap-2 Maneuver	~ 41	-	-	-	-	-
	054				_	-
Stage 1	254	-	-	-		
•	254 349	-	-	-	-	-
Stage 1 Stage 2		-	-	-	-	-

Approach	WB	NB	SB
HCM Control D	Delay, <b>\$</b> /973.33	0	0.18
HCM LOS	F		

Minor Lane/Major Mvmt	NBT	NBRW	'BLn1	SBL	SBT		
Capacity (veh/h)	-	-	46	468	-		
HCM Lane V/C Ratio	-	-	1.3	0.029	-		
HCM Control Delay (s/veh)	-	-\$	373.3	12.9	-		
HCM Lane LOS	-	-	F	В	-		
HCM 95th %tile Q(veh)	-	-	5.7	0.1	-		
Notes							
~: Volume exceeds capacity	\$: De	elav exce	eds 3	00s	+: Comp	utation Not Defined	*: All major volume in platoon

#### Intersection

Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations		1	ef 👘			1
Traffic Vol, veh/h	0	0	1375	4	0	979
Future Vol, veh/h	0	0	1375	4	0	979
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage	, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	1495	4	0	1064

Major/Minor	Minor1	Ν	lajor1	Ма	ajor2	
Conflicting Flow All	-	1497	0	0	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.318	-	-	-	-
Pot Cap-1 Maneuver	0	151	-	-	0	-
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve		151	-	-	-	-
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
					~-	

Approach	WB	NB	SB	
HCM Control Delay, s/v	0	0	0	
HCM LOS	Α			

Minor Lane/Major Mvmt	NBT	NBRWE	3Ln1	SBT
Capacity (veh/h)	-	-	-	-
HCM Lane V/C Ratio	-	-	-	-
HCM Control Delay (s/veh)	-	-	0	-
HCM Lane LOS	-	-	А	-
HCM 95th %tile Q(veh)	-	-	-	-

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	<b>↑</b>			↑		1
Traffic Vol, veh/h	304	0	0	58	0	9
Future Vol, veh/h	304	0	0	58	0	9
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	0
Veh in Median Storage	,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	330	0	0	63	0	10

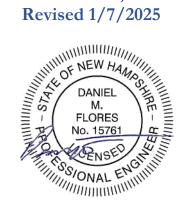
Major/Minor Ma	ajor1	Ν	lajor2	Ν	/linor1	
Conflicting Flow All	0	-	-	-	-	330
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	-	0	0	-	0	711
Stage 1	-	0	0	-	0	-
Stage 2	-	0	0	-	0	-
Platoon blocked, %	-			-		
Mov Cap-1 Maneuver	-	-	-	-	-	711
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		NB	
HCM Control Delay, s/v	0		0		10.13	
HCM LOS	U		U		B	
					U	
Minor Lane/Major Mvmt	N	BLn1	EBT	WBT		
Capacity (veh/h)		711	-	-		
HCM Lane V/C Ratio HCM Control Delay (s/ve	C	).014	-	-		
		10.1				

HCM Control Delay (s/veh)	10.1	-	-	
HCM Lane LOS	В	-	-	
HCM 95th %tile Q(veh)	0	-	-	

# STORM WATER MANAGEMENT REPORT

for

COMMERCIAL REDEVELOPMENT INSIDE OUT PAINTING AND REMODELING MAP 198 LOT 147 100 LOWELL ROAD HUDSON, NEW HAMPSHIRE


**Prepared for:** 

100 LOWELL ROAD, LLC 122 LOWELL ROAD, SUITE 3 HUDSON, NH 03501

**Prepared by:** 

SFC ENGINEERING PARTNERSHIP, INC. 183 ROCKINGHAM ROAD, UNIT 3 EAST WINDHAM, NH 03087

> **OCTOBER 2, 2024** Revised 1/7/2025





•

•

•

# **TABLE OF CONTENTS**

#### NARRATIVE

А.	Project Description
В.	Existing Conditions
C.	Proposed Development1
D.	Stormwater Management Approach
Е.	Analytical Approach
F.	Pre-development Analysis
G.	Post-development Analysis
Н.	Model Results
I.	Conclusion
APPENDIX A	Aerial & USGS Maps
APPENDIX B	Soil Map, Test Pit Logs, Soil Ksat Table
APPENDIX C	Pre-Development Hydrologic Analysis
APPENDIX D	Post-Development Hydrologic Analysis
APPENDIX E	Supporting Hydrologic Data
APPENDIX F	BMP Worksheets
APPENDIX G	Inspection and Maintenance Manual

#### Attachment "E" Page 1 of 4

### STORM WATER MANAGEMENT REPORT

#### COMMERCIAL DEVELOPMENT 100 LOWELL ROAD HUDSON NH

#### A. PROJECT DESCRIPTION

100 Lowell Rd LLC proposes the development of a 6,855 gross square foot commercial building to support their painting business, Inside Out Painting and Remodeling. The building will provide them a business office with conditioned space to store material.

#### **B. EXISTING CONDITIONS**

The property is identified as lot 198 on tax map 147 consisting of  $0.8\pm$  acres located at 100 Lowell Road in the Hudson Business zoning district. The property is currently vacant, having previously contained a single-family residence. The property has frontage on Lowell Road and County Road. Sousa Field is to the east, with the field parking lot to the north.

The property is nearly all cleared, with a treeline along the north, east, and south boundary. The cleared area is flat, with steeper slopes in the treeline.

Soils consist of Hinckley loamy sand. Test pits were observed by SFC, with no seasonal high-water table observed to greater than 84". No wetlands exist on the property. No portion of the parcel is located within a flood hazard area, as interpreted from the FEMA Flood Insurance Rate Map for the Town of Hudson, Community-Panel number 33011C0518D with effective date of September 25, 2009.

The property is served by municipal water and sewer, and underground gas. Electric and communications are overhead to a utility pole on the property.

The USDA Natural Resources Conservation Service (NRCS) web soil survey shows the lot comprised of Hinckley loamy sand, within the Hydrologic Soil Group (HSG) A. Three test pits were observed by SFC, with the soil found to be consistent with Hinckley. No seasonal high-water table was observed in the 3 pits down to a total depth of 90".

#### C. PROPOSED DEVELOPMENT

Proposed development includes a 6,855 gross square foot commercial building with one-way access drive and associated parking, a dumpster with enclosure, and loading area. A bioretention area at the front of the property, porous pavement areas and Infiltration Trench Swales will treat and attenuate stormwater runoff. A retaining wall will be provided along the

south side of the property. Utilities will include underground water and sewer from existing service stubs on the property. Underground gas will connect to the existing main in the road. The overhead electric and communications will be moved to a new utility pole, then underground to the building.

Given the accidents associated with the intersection of Lowell Road and County Road, this development proposes right-in and right-out access to the site. Vehicles will enter the site from the northbound lane of Lowell Road and exit utilizing the northbound lane of County Road. This alleviates the potential for adding cross traffic to the difficult intersection.

#### D. STORMWATER MANAGEMENT APPROACH

The stormwater management system has been designed in accordance with the requirements of the Town of Hudson stormwater regulations and the New Hampshire Stormwater Manual.

Stormwater facilities consisting of two infiltration trenches, a bio-retention basin area and porous pavement areas will be constructed to capture stormwater runoff from the development. These features have been designed to capture, treat, and infiltrate proposed development runoff while reducing peak flows and volumes.

The bioretention basin will outlet to the northwest portion of the site. The infiltration trenches will outlet upgradient of Lowell and County Road open drainage systems. Design of the bioretention area, infiltration trenches, and porous pavement is based on test pits by SFC with no seasonal high-water table observed. The soil infiltration rate is per the Ksat Values for NH Soils prepared by the Society of Soil Scientists of Northern New England, which lists Hinckley soil having a C horizon low-end Ksat of 20 inches per hour. Our design uses a conservative 10 inches per hour, as required by Env-Wq 1504.14(c)(3).

Groundwater Recharge Volume calculations are included with the BMP worksheets in Appendix F.

This stormwater design conforms to the Hudson Stormwater Management regulations (Chapter 290) for a site disturbing greater than 20,000 sf.

#### E. ANALYTICAL APPROACH

A hydrologic model was prepared to identify pre-development runoff patterns and postdevelopment impacts. An SCS TR-20 hydrologic model was used to assist in the analysis. HydroCADTM Version 10.0 software was used to perform drainage calculations. Design storms, using an SCS Type-III, 24-hour rainfall distribution, were considered for storms with return periods of 2, 10, 25, and 50 years.

The stormwater model includes a detailed analysis of the locus subcatchments for both the pre- and post-development condition as well as a hydraulic analysis of each component in the drainage system.

#### F. PRE-DEVELOPMENT ANALYSIS

The pre-development site was analyzed based on the existing cover conditions and includes one discharge location and one subcatchment. The site flows overland to an open drainage system on Lowell and County Road and outfalls in the northwest corner of the property.

The site has been analyzed with a single subcatchment identified as 1E. This subcatchment includes the entire property. The house, garage, and driveway that historically occupied the site are included for existing impervious cover. Stormwater runoff flows overland towards Lowell and County Road and discharges to the open drainage system in the northwest corner of the property. The drainage area totals 0.78 acres with a weighed curve number of 42.

Our design point (1L) for analysis is the County Road open drainage and outfall at the northwest corner of the property.

#### G. POST-DEVELOPMENT ANALYSIS

The post-development site was analyzed based on the proposed cover conditions, with the single discharge location (1L). The pre-development subcatchment has been divided into seven, with the changes described below.

Subcatchment 1P includes the lawn area fronting County Road, a portion of the exit driveway, and undeveloped land along the north and west side of the property. Stormwater runoff flows overland to the open drainage in County Road or sheet flows to the town property to the north. The drainage area is 0.21 acres with a weighed curve number of 39.

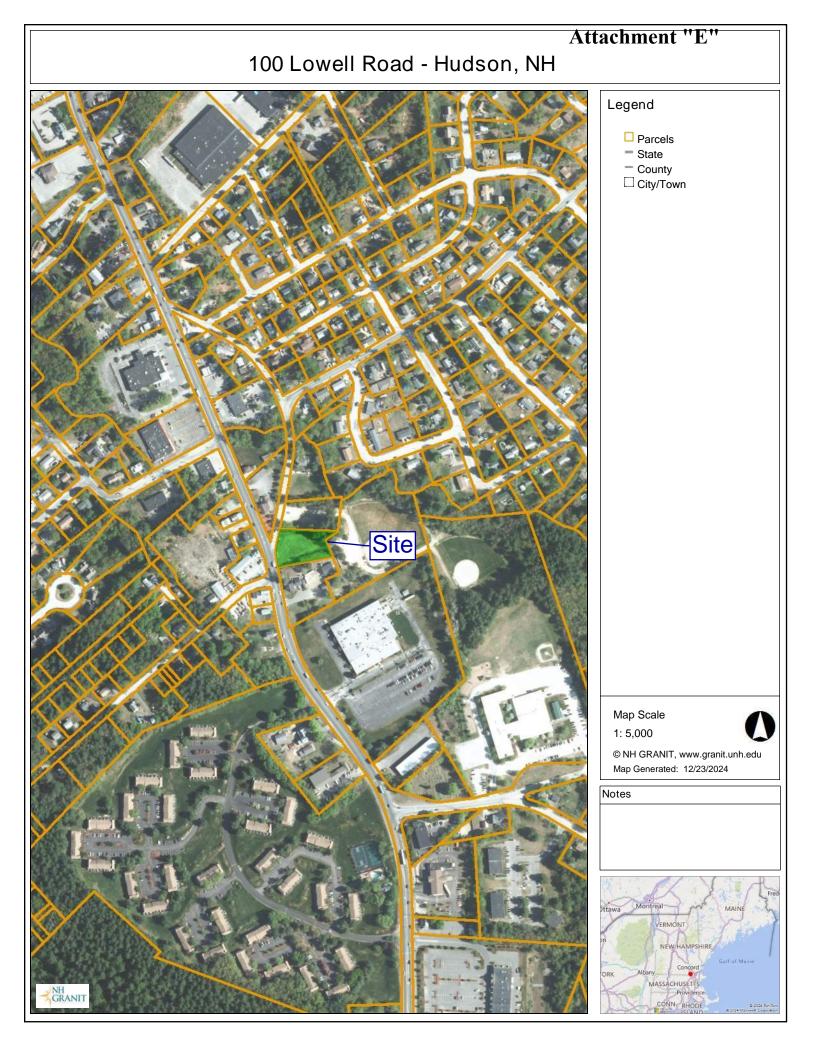
Subcatchments 1.1P, 1.2P, 2P, 2.1P, 2.2P, and 3P consist of the proposed development with the commercial building, parking areas, and remainder of the access drive. Stormwater runoff from 1.1P includes the entrance driveway and land to the southwest and flows overland to infiltration trench (P2) along the north side of the entrance driveway. Stormwater runoff from 1.2P includes a portion of the exit driveway and the dumpster area and flows to infiltration trench (P1) along the north side of the exit driveway. Stormwater runoff from 2P includes the parking area east of the bioretention basin and land around it that flows to the bioretention basin (Bio) P1. Subcatchments 2.1P and 2.2P are the porous pavement parking areas PP-1 beside the building and PP-2 to the south, respectively. 3P is the commercial building roof that runs to the bioretention basin via an 8" HDPE.

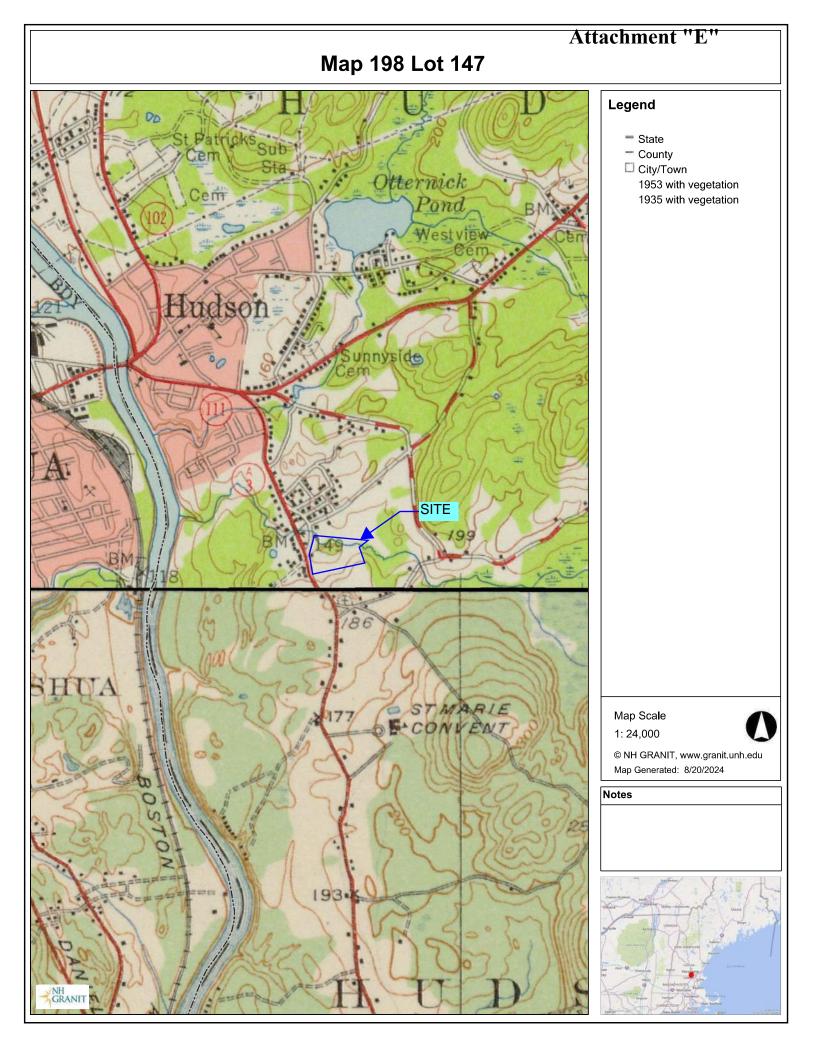
The two infiltration trenches and bio-retention basin are designed to treat and attenuate stormwater runoff. A broad crested weir is provided at the bioretention basin as an emergency overflow outlet to discharge upgradient of design point 1L.

#### **H. MODEL RESULTS**

A comparison of pre-development and post-development peak flows for the 2-, 10-, 25-, and 50-year storms can be seen in Table One as follows:

	Pre		Post		Delta	
	Peak Flow	Volume	Peak Flow	Volume	Peak Flow	Volume
Storm	CFS	CF	CFS	CF	CFS	CF
2yr	0.0	1	0.0	0	0.0	(1)
10yr	0.0	498	0.0	94	0.0	(404)
25yr	0.2	1195	0.1	297	(0.1)	(898)
50yr	0.4	1859	0.2	533	(0.2)	(1326)


#### TABLE ONE: RUNOFF RATE COMPARISON


#### I. CONCLUSION

An examination of the results of the analysis indicates that the proposed BMP infrastructure reduces peak flow and volume for all storms. We conclude that the project will result in no adverse downstream impacts.

### **APPENDIX A**

# AERIAL & USGS MAP





**APPENDIX B** 

SOILS DATA



United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Attachment "E" Custom Soil Resource Report for Hillsborough County, New Hampshire, Eastern Part



# Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	12
Map Unit Descriptions	
Hillsborough County, New Hampshire, Eastern Part	14
HsB—Hinckley loamy sand, 3 to 8 percent slopes	14
HsC—Hinckley loamy sand, 8 to 15 percent slopes	
References	

## Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



Γ

MAP INFORMATION The soil surveys that comprise your AOI were mapped at	1.20,000.	Warning: Soil Map may not be valid at this scale.	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed	scale.		Please rely on the par scale on each map sheet for map measurements.		source of Map. Natural Resources Conservation Service Web Soil Survey URL:	Coordinate System: Web Mercator (EPSG:3857)	Maps from the Web Soil Survey are based on the Web Mercator	projection, which preserves direction and shape but distorts distance and area A moiection that meserves area such as the	Albers equal-area conic projection, should be used if more	accurate calculations of distance or area are required.	This product is generated from the USDA-NRCS certified data as	of the version date(s) listed below.	Soil Survey Area: Hillsborough County, New Hampshire, Eastern	Part Survev Area Data: Version 26 Aur 22 2023	המיגבל נהכים המומי. הביסוסו דהי נהמה בילי החדם בדי בהדה	Soil map units are labeled (as space allows) for map scales		Date(s) aerial images were photographed: May 22, 2022—Jun	0, 2022 0	The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
Area of Interest (AOI)				Special Point Features	Water Featu	Borrow Pit Jacouro Pit	Clay Spot	<ul> <li>Closed Depression</li> <li>Interstate Highways</li> </ul>	🧩 Gravel Pit 🗾 🐱 US Routes	🔹 Gravelly Spot 🛛 🛹 Major Roads	🖏 Landfill 📃 📈 Local Roads	🙏 Lava Flow 🛛 Background	👞 Marsh or swamp 🜉 Aerial Photography	🙊 Mine or Quarry	Miscellaneous Water	Perennial Water	Rock Outcrop	+ Saline Spot	Sandy Spot	Severely Eroded Spot	Sinkhole	Slide or Slip	Sodic Spot	

## **Map Unit Legend**

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
HsB	Hinckley loamy sand, 3 to 8 percent slopes	0.5	62.2%
HsC	Hinckley loamy sand, 8 to 15 percent slopes	0.3	37.8%
Totals for Area of Interest	1	0.8	100.0%

## **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## Hillsborough County, New Hampshire, Eastern Part

#### HsB—Hinckley loamy sand, 3 to 8 percent slopes

#### **Map Unit Setting**

National map unit symbol: 2svm8 Elevation: 0 to 1,430 feet Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Not prime farmland

#### **Map Unit Composition**

*Hinckley and similar soils:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

#### **Description of Hinckley**

#### Setting

*Landform:* Outwash plains, eskers, moraines, kame terraces, kames, outwash terraces, outwash deltas

Landform position (two-dimensional): Summit, shoulder, backslope, footslope

Landform position (three-dimensional): Nose slope, base slope, crest, side slope, riser, tread

Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave

*Parent material:* Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

#### **Typical profile**

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

#### **Properties and qualities**

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 3.0 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A **Custom Soil Resource Report** 

*Ecological site:* F144AY022MA - Dry Outwash *Hydric soil rating:* No

#### **Minor Components**

#### Windsor

Percent of map unit: 8 percent Landform: Kame terraces, outwash plains, kames, eskers, moraines, outwash terraces, outwash deltas

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, base slope, crest, side slope, riser, tread Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave

Hydric soil rating: No

#### Sudbury

Percent of map unit: 5 percent
 Landform: Kame terraces, outwash plains, moraines, outwash terraces, outwash deltas
 Landform position (two-dimensional): Backslope, footslope
 Landform position (three-dimensional): Head slope, base slope, side slope, tread
 Down-slope shape: Concave, linear
 Across-slope shape: Concave, linear

Hydric soil rating: No

#### Agawam

Percent of map unit: 2 percent

*Landform:* Kame terraces, outwash plains, kames, eskers, moraines, outwash terraces, outwash deltas

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, base slope, crest, side slope, riser, tread Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave Hydric soil rating: No

#### HsC—Hinckley loamy sand, 8 to 15 percent slopes

#### Map Unit Setting

National map unit symbol: 2svm9 Elevation: 0 to 1,480 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

#### Map Unit Composition

*Hinckley and similar soils:* 85 percent *Minor components:* 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Hinckley**

#### Setting

*Landform:* Kame terraces, outwash plains, kames, eskers, moraines, outwash terraces, outwash deltas

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser

Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave

*Parent material:* Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

#### Typical profile

*Oe - 0 to 1 inches:* moderately decomposed plant material *A - 1 to 8 inches:* loamy sand *Bw1 - 8 to 11 inches:* gravelly loamy sand *Bw2 - 11 to 16 inches:* gravelly loamy sand *BC - 16 to 19 inches:* very gravelly loamy sand *C - 19 to 65 inches:* very gravelly sand

#### **Properties and qualities**

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.1 inches)

#### Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

#### **Minor Components**

#### Merrimac

Percent of map unit: 5 percent Landform: Eskers, moraines, outwash terraces, outwash plains, kames Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser

*Down-slope shape:* Convex *Across-slope shape:* Convex *Hydric soil rating:* No

#### Sudbury

Percent of map unit: 5 percent

Custom Soil Resource Report

Landform: Outwash terraces, kame terraces, outwash plains, moraines, outwash deltas
 Landform position (two-dimensional): Backslope, footslope
 Landform position (three-dimensional): Base slope, tread
 Down-slope shape: Concave, linear
 Across-slope shape: Concave, linear
 Hydric soil rating: No

#### Windsor

Percent of map unit: 5 percent
Landform: Kame terraces, outwash plains, outwash terraces, outwash deltas, kames, eskers, moraines
Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope
Landform position (three-dimensional): Head slope, nose slope, side slope, crest, riser
Down-slope shape: Concave, convex, linear
Across-slope shape: Convex, linear, concave
Hydric soil rating: No



## **TEST PIT LOG**

DATE:	08/29/24	PROJE	CT NUMBER:	667710	PROJECT NAME:	Inside Out Painting
	INSPECTOR:	JRB				TEST PIT NUMBER
					MAP:	#1
	TOWN:	Hudson			LOT:	<i></i>
LAYER DEPTH	COLO	DR	TEXTURE & N	IOISTURE	STRUCTURE, GRADE & CONSISTENCE	REDOX. FEATURES & NOTES
0-4"	10YR	2/3	Sandy L Mois		Massive Loose	
4-36"	2.5Y	6/4	Medium Mois		Single Grain Loose	
36-90"	2.5Y	6/3	Medium to Gravely		Single Grain Loose	
			1	NOTES:		
	E.S.H.W.T.:	>90"				
	FREE WATER:	n/o				
LEDGE/RC	OCK REFUSAL:	n/o				
% STON	E/BOULDERS:	0/0				
RESTRI	CTIVE LAYER:	n/o				
	ROOT DEPTH:	6"				DESIGNER STAMP



## **TEST PIT LOG**

DATE:	08/29/24	PROJE	CT NUMBER:	667710	PROJECT NAME:	Inside Out Painting
	INSPECTOR:	JRB				TEST PIT NUMBER
					MAP:	#2
	TOWN:	Hudson			LOT:	<i>"</i> <b>–</b>
LAYER DEPTH	COLO	OR	TEXTURE & N	NOISTURE	STRUCTURE, GRADE & CONSISTENCE	REDOX. FEATURES & NOTES
0-4"	10YR	4/3	Sandy I Mois		Massive Loose	
4-36"	2.5Y	6/4	Loamy Mois		Single Grain Loose	
36-84"	2.5Y	6/3	Medium to Gravely		Single Grain Loose	
			I	NOTES:		
	E.S.H.W.T.:	>84"				
	FREE WATER:	n/o				
	CK REFUSAL:	n/o				
	E/BOULDERS:	0/0				
	CTIVE LAYER: ROOT DEPTH:	n/o 10"				DESIGNER STAMP
L	NOUT DEFTH.	10				



## **TEST PIT LOG**

DATE:	08/29/24	PROJE	CT NUMBER:	667710	PROJECT NAME:	Inside Out Painting
	INSPECTOR:	JRB				TEST PIT NUMBER
		Hudson			MAP: LOT:	#3
LAYER	TOWN:	nuuson			STRUCTURE, GRADE &	
DEPTH	COLO	DR	TEXTURE & N	IOISTURE		REDOX. FEATURES & NOTES
			Sandy L	oam	Massive	
0-4"	10YR	4/3	Mois		Loose	
4-84"	2.5Y	4/4	Loamy S Mois		Single Grain Very Friable	mix fill with broken concrete OG between 36-42"
				NOTES:	1	
	E.S.H.W.T.:	>84"	ľ			
	FREE WATER:	n/o				
	OCK REFUSAL:	n/o				
	E/BOULDERS:	0/0				
	CTIVE LAYER:	n/o				
	ROOT DEPTH:	42"				DESIGNER STAMP

Soil Series	legend number	Ksat low - B in/hr	Ksat high - B in/hr	Ksat low - C in/hr	Ksat high - C in/hr	Hyd. Grp.	Group	Land Form	Temp.	Soil Textures
Occum	Ł	9.0	2.0	6.00	20.0	ш	2	Flood Plain (Bottom Land)	mesic	loamy
Suncook	2	6.0	20.0	6.00	20.0	A	1	Flood Plain (Bottomland)	mesic	sandy
Lim	3	0.6	2.0	6.00	20.0	ပ	5	Flood Plain (Bottom Land)	mesic	loamy
Pootatuck	4	0.6	6.0	6.00	20.0	Ш	ო	Flood Plain (Bottom Land)	mesic	loamy
Rippowam	5	0.6	6.0	6.00	20.0	ပ	5	Flood Plain (Bottom Land)	mesic	loamy
Saco	9	0.6	2.0	6.00	20.0	۵	9	Flood Plain (Bottom Land)	mesic	silty
Hadley	8	0.6	2.0	0.60	6.0	ш	2	Flood Plain (Bottom Land)	mesic	silty
Winooski	6	0.6	6.0	0.60	6.0	B.		Flood Plain (Bottom Land)	mesic	silty over loamy
Merrimac	10	2.0	20.0	6.00	20.0	A	1	Outwash and Stream Terraces	mesic	gravelly sand
Gloucester	11	6.0	20.0	6.00	20.0	A	1	Sandy Till	mesic	sandy-skeletal
Hinckley	12	6.0	20.0	20.00	100.0	A	-	Outwash and Stream Terraces	mesic	sandy-skeletal
Sheepscot	14	6.0	20.0	6.00	20.0	В	з	Outwash and Stream Terraces	frigid	sandy-skeletal
Searsport	15	6.0	20.0	6.00	20.0	Δ	9	Outwash and Stream Terraces	frigid	sandy
Saugatuck	16	0.06	0.2	6.00	20.0	υ	5	Outwash and Stream Terraces	mesic	sandy
Colton, gravelly	21	6.0	20.0	20.00	100.0	A	-	Outwash and Stream Terraces	frigid	sandy-skeletal
Colton	22	6.0	20.0	20.00	100.0	A	-	Outwash and Stream Terraces	frigid	sandy-skeletal
Masardis	23	6.0	20.0	6.00	20.0	A	-	Outwash and Stream Terraces	frigid	sandy-skeletal
Agawam	24	6.0	20.0	20.00	100.0	в	2	Outwash and Stream Terraces	mesic	loamy over sandy
Windsor	26	6.0	20.0	6.00	20.0	A	-	Outwash and Stream Terraces	mesic	sandy
Groveton	27	0.6	2.0	0.60	6.0	В	2	Outwash and Stream Terraces	frigid	loamy
Madawaska	28	0.6	2.0	6.00	20.0	В	3	Outwash and Stream Terraces	frigid	loamy over sandy
Woodbridge	29	0.6	2.0	0.00	0.6	ပ	e	Firm, platy, loamy till	mesic	loamy
Unadilla	30	0.6	2.0	2.00	20.0	В	2	Terraces and glacial lake plains	mesic	silty
Hartland	31	0.6	2.0	0.20	2.0	в	2	Terraces and glacial lake plains	mesic	silty
Boxford	32	0.1	0.2	0.00	0.2	U	ო	Silt and Clay Deposits	mesic	fine
Scitico	33	0.0	0.2	0.00	0.2	υ	5	Silt and Clay Deposits	mesic	fine
Wareham	34	6.0	20.0	6.00	20.0	ပ	5	Outwash and Stream Terraces	mesic	sandy
Champlain	35	6.0	20.0	20.00	100.0	A	1	Outwash and Stream Terraces	frigid	gravelly sand
Adams	36	6.0	20.0	20.00	99.0	A	-	Outwash and Stream Terraces	frigid	sandy
Melrose	37	2.0	6.0	0.00	0.2	υ	en l	Sandy/loamy over silt/clay	frigid	loamy over clayey
Eldridge	38	6.0	20.0	0.06	0.6	υ	en l	Sandy/loamy over silt/clay	mesic	sandy over loamy
Millis	39					υ	e	Firm, platy, sandy till	frigid	loamy
Canton	42	2.0	6.0	6.00	20.0	В	2	Loose till, sandy textures	mesic	loamy over sandy
Montauk	44	0.6	6.0 6.0	0.06	0.6	<b>с</b> о	т (	Firm, platy, sandy till	mesic	loamy
Madaucatio	46	0.6	2.0	0.06	0.6	<u>،</u> د		Firm, platy, sandy till		loamy
INIGUEWESKE, aquentic	40	0.0	7.0 7	0.00	20.0	<u>م</u>	n u			loamy over sandy
Whitman	49	0.0	0.2	0.00	0.2	-	ıo •	Firm, platy, loamy till	mesic	loamy
Recket	22 26	2.U	20.0	0.06	20.U	∢ ر	~	Sandy I III Firm platy sandy till	frinid	sandy-skeletal Ioamv
Waumbeck	28	2.0	20.0	6.00	20.0	о ш		Loose till, sandy textures	friaid	sandv-skeletal
Charlton	62	0.6	6.0	0.60	6.0	в	2	Loose till, loamy textures	mesic	loamy
Paxton	99	0.6	2.0	0.00	0.2	ပ	ю	Firm, platy, loamy till	mesic	loamy
Sutton	68	0.6	6.0	0.60	6.0	В	3	Loose till, loamy textures	mesic	loamy
Berkshire	72	0.6	6.0	09.0	6.0	В	2	Loose till, loamy textures	frigid	loamy
Marlow	76	0.6	2.0	0.06	0.6	ပ	с	Firm, platy, loamy till	frigid	loamy
Peru	78	0.6	2.0	0.06	0.6 2.2	ပ [ျ]	с, .	Firm, platy, loamy till	frigid	loamy
Thorndike	84	0.6	2.0	0.60	2.0	C/D	4	Friable till, silty, schist & phyllite	frigid	loamy-skeletal
Hollis	86	0.6 2 2	6.0	0.60	6.0	C/D	4	Loose till, bedrock	mesic	loamy
Winnecook	88 8	0.6	2.0	0.60	2.0	ပ ၊	4,	Friable till, silty, schist & phyllite	frigid	loamy-skeletal
Chattield	68 6	0.6	6.0 6	0.60	6.0 6.0	n c	4 4	Loose till, bedrock	mesic	loamy
Tuguack	8	0.Z	0.0	2.00	0.0	ې چ	4 4		frigid	loaniy
Modetock	32	2.0	0.0	2.00	0.0 8 0		7 4	LOUSE IIII, DEGLOCK LOOSE HILL PEAROCK	frigid	loaniy
Rawsonville	88	0.5	9.0 9	0.60	0.0	2 2 2 2	4	Loose till, bedrock	frinid	
Tunbridae	3 6	0.0	0.0	0.60	0.0	<b>ა</b> ძ	14	Loose till, bedrock	frigid	loamv
202212	}	2	2	222	5	>			5	6

loamy over sandy sandy or sandy-skeletal sandy loam in Cd sity over gravelly very fine sandy loam silty clay loam

11

gravelly coarse sand organic over sand ortstein gravelly surface

loamy over loamy sanc

Other

Spodosol

\$ ou

occasionally flooded

single grain in C

strata strata of fine sand

11

Т Т loamy cap loamy cap

T 

slate, loamy cap loamy over sand/gravel

# Sorted by Numerical Legend K_{sat} B and C horizons SSSNNE Special pub no. 5

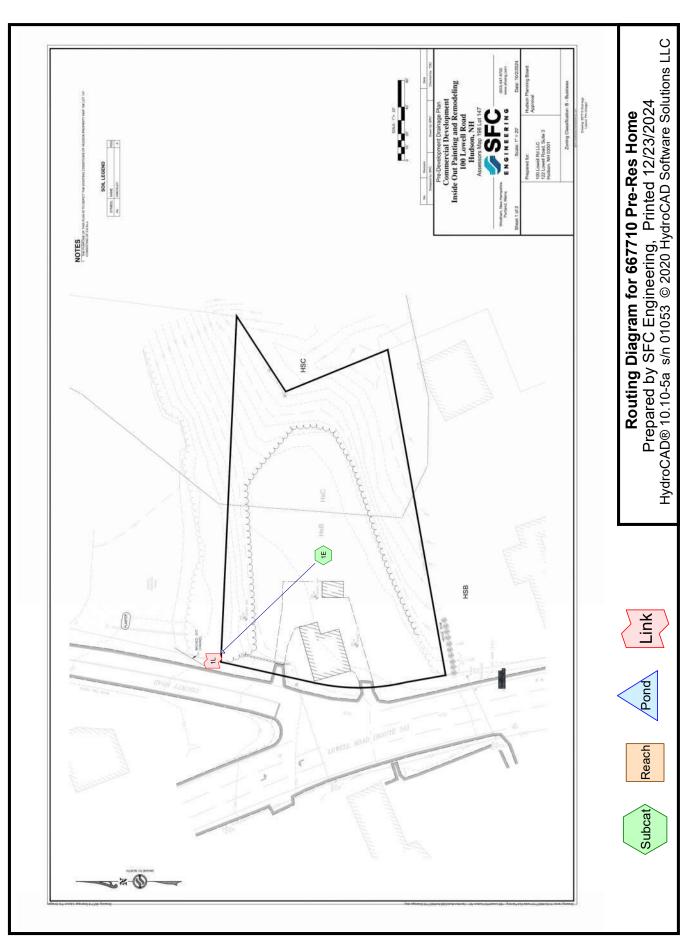
chm

less than 20 in. deep less than 20 in. deep 20 to 40 in. deep 20 to 40 in. deep less than 20 in. deep less than 20 in. deep 20 to 40 in. deep 20 to 40 in. deep

tta

fine sandy loam fine sandy loam in Cd

loamy sand in Cd loamy over loamy sand loamy sand in Cd loamy sand in Cd sandy or sandy-skeletal mucky loam loamy cap gravelly sandy loam in Cd very cobbly loamy sand fine sandy loam


silty clay loam in C

T T 1

Т

## **APPENDIX C**

## PRE-DEVELOPMENT HYDROLOGIC ANALYSIS



Inside Out Painting

#### 667710 Pre-Res Home

Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Printed 12/23/2024 Page 1

### Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
2,390	96	Gravel surface, HSG A (1E)
15,558	39	Pasture/grassland/range, Good, HSG A (1E)
240	98	Paved parking, HSG A (1E)
1,172	98	Unconnected roofs, HSG A (1E)
14,509	30	Woods, Good, HSG A (1E)
33,869	42	TOTAL AREA

Inside Out Painting

667710 Pre-Res Home

Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Printed 12/23/2024 Page 2

### Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
33,869	HSG A	1E
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
33,869		TOTAL AREA

667710 Pre-Res Home	I Type III 24-hr 2-	Out Painting <i>infall=3.09"</i>
Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions L	P	12/23/2024 Page 3
Tydiocade 10.10-3a sin 01033 e 2020 Tydiocad Soliware Solutions E		Fage 3

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1E:	Runoff Ar	ea=33,869 st	f 4.17% Impervious	Runoff Depth>0.00"
	Flow Length=238'	Tc=4.1 min	UI Adjusted CN=41	Runoff=0.0 cfs 1 cf

Link 1L:

Inflow=0.0 cfs 1 cf Primary=0.0 cfs 1 cf

Total Runoff Area = 33,869 sf Runoff Volume = 1 cf Average Runoff Depth = 0.00"95.83% Pervious = 32,457 sf4.17% Impervious = 1,412 sf

Inside Out Painting

Page 4

#### 667710 Pre-Res Home Prepared by SFC Engineering

Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC

#### Summary for Subcatchment 1E:

[49] Hint: Tc<2dt may require smaller dt [73] Warning: Peak may fall outside time span

Runoff = 0.0 cfs @ 20.00 hrs, Volume= 1 cf, Depth> 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.09"

A	rea (sf)	CN /	Adj Desc	cription	
	15,558	39	Past	ure/grassla	nd/range, Good, HSG A
	14,509	30		ds, Ğood, I	
	240	98	Pave	ed parking,	HSG A
	1,172	98	Unco	onnected ro	ofs, HSG A
	2,390	96	Grav	el surface,	HSG A
	33,869	42	41 Weig	hted Avera	ige, UI Adjusted
	32,457		95.8	3% Perviou	s Area
	1,412		4.17	% Impervio	us Area
	1,172		83.0	0% Unconr	nected
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.3	20	0.2500	0.15		Sheet Flow, Sheet Woods
					Woods: Light underbrush n= 0.400 P2= 2.90"
0.3	38	0.2500	2.50		Shallow Concentrated Flow, Shallow Woods
					Woodland Kv= 5.0 fps
1.2	150	0.0400	2.00		Shallow Concentrated Flow, Shallow Bare
					Nearly Bare & Untilled Kv= 10.0 fps
0.2	30	0.2300	2.40		Shallow Concentrated Flow, Shallow Enbankment
					Woodland Kv= 5.0 fps
4.1	238	Total			

#### Summary for Link 1L:

Inflow Are	a =	33,869 sf,	4.17% Impervious,	Inflow Depth > 0.00" for 2-YR event
Inflow	=	0.0 cfs @	20.00 hrs, Volume=	1 cf
Primary	=	0.0 cfs @	20.00 hrs, Volume=	1 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

667710 Pre-Res HomeInside Out PaintingPrepared by SFC EngineeringType III 24-hr10-YR Rainfall=4.77"HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLCPage 5

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Runoff Area=33,869 sf 4.17% Impervious Runoff Depth>0.18" Flow Length=238' Tc=4.1 min UI Adjusted CN=41 Runoff=0.0 cfs 498 cf

> Inflow=0.0 cfs 498 cf Primary=0.0 cfs 498 cf

Total Runoff Area = 33,869 sf Runoff Volume = 498 cf Average Runoff Depth = 0.18" 95.83% Pervious = 32,457 sf 4.17% Impervious = 1,412 sf

Link 1L:

Subcatchment1E:

## 667710 Pre-Res HomeInside Out PaintingPrepared by SFC EngineeringType III 24-hr10-YR Rainfall=4.77"HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLCPage 6

#### Summary for Subcatchment 1E:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.0 cfs @ 12.41 hrs, Volume=

498 cf, Depth> 0.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.77"

Area (sf)CNAdjDescription15,55839Pasture/grassland/range, Good, HSG A14,50930Woods, Good, HSG A24098Paved parking, HSG A	
14,509 30 Woods, Good, HSG A	
240 98 Paved parking, HSG A	
1,172 98 Unconnected roofs, HSG A	
2,390 96 Gravel surface, HSG A	
33,869 42 41 Weighted Average, UI Adjusted	
32,457 95.83% Pervious Area	
1,412 4.17% Impervious Area	
1,172 83.00% Unconnected	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
2.3         20         0.2500         0.15         Sheet Flow, Sheet Woods	
Woods: Light underbrush n= 0.400 P2= 2.90'	
0.3 38 0.2500 2.50 Shallow Concentrated Flow, Shallow Woods	
Woodland Kv= 5.0 fps	
1.21500.04002.00Shallow Concentrated Flow, Shallow Bare	
Nearly Bare & Untilled Kv= 10.0 fps	
0.2 30 0.2300 2.40 Shallow Concentrated Flow, Shallow Enbank	ment
Woodland Kv= 5.0 fps	

4.1 238 Total

#### Summary for Link 1L:

Inflow Area =	33,869 sf, 4	4.17% Impervious,	Inflow Depth > 0.18"	for 10-YR event
Inflow =	0.0 cfs @ 12	2.41 hrs, Volume=	498 cf	
Primary =	0.0 cfs @ 12	2.41 hrs, Volume=	498 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

667710 Pre-Res Home	Inside Out Painting "Type III 24-hr 25-YR Rainfall=5.82
Prepared by SFC Engineering	Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	ons LLC Page 7

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1E:Runoff Area=33,869 sf 4.17% Impervious Runoff Depth>0.42"Flow Length=238'Tc=4.1 min UI Adjusted CN=41Runoff=0.2 cfs 1,195 cf

Link 1L:

Inflow=0.2 cfs 1,195 cf Primary=0.2 cfs 1,195 cf

Total Runoff Area = 33,869 sf Runoff Volume = 1,195 cf Average Runoff Depth = 0.42" 95.83% Pervious = 32,457 sf 4.17% Impervious = 1,412 sf

Inside Out Painting

#### 667710 Pre-Res Home Prepared by SFC Engineering

Type III 24-hr 25-YR Rainfall=5.82" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 8

#### Summary for Subcatchment 1E:

[49] Hint: Tc<2dt may require smaller dt

0.2 cfs @ 12.28 hrs, Volume= 1,195 cf, Depth> 0.42" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.82"

A	rea (sf)	CN A	Adj Desc	cription	
	15,558	39	Past	ure/grassla	nd/range, Good, HSG A
	14,509	30	Woo	ds, Ğood, I	HSG A
	240	98	Pave	ed parking,	HSG A
	1,172	98	Unco	onnected ro	oofs, HSG A
	2,390	96	Grav	el surface,	HSG A
	33,869	42	41 Weig	hted Avera	age, UI Adjusted
	32,457		95.8	3% Perviou	is Area
	1,412		4.17	% Impervio	us Area
	1,172		83.0	0% Unconr	nected
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.3	20	0.2500	0.15		Sheet Flow, Sheet Woods
					Woods: Light underbrush n= 0.400 P2= 2.90"
0.3	38	0.2500	2.50		Shallow Concentrated Flow, Shallow Woods
					Woodland Kv= 5.0 fps
1.2	150	0.0400	2.00		Shallow Concentrated Flow, Shallow Bare
					Nearly Bare & Untilled Kv= 10.0 fps
0.2	30	0.2300	2.40		Shallow Concentrated Flow, Shallow Enbankment
					Woodland Kv= 5.0 fps
4.1	238	Total			

#### Summary for Link 1L:

Inflow Area =	33,869 sf, 4.17% Imp	pervious, Inflow Depth >	0.42" for 25-YR event
Inflow =	0.2 cfs @ 12.28 hrs, \	Volume= 1,195 c	Я
Primary =	0.2 cfs @ 12.28 hrs, V	Volume= 1,195 c	cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Inside Out Painting667710 Pre-Res HomeType III 24-hr50-YR Rainfall=6.59"Prepared by SFC EngineeringPrinted 12/23/2024HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLCPage 9

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1E:Runoff Area=33,869 sf 4.17% Impervious Runoff Depth>0.66"Flow Length=238'Tc=4.1 min UI Adjusted CN=41Runoff=0.4 cfs 1,859 cf

Link 1L:

Inflow=0.4 cfs 1,859 cf Primary=0.4 cfs 1,859 cf

Total Runoff Area = 33,869 sf Runoff Volume = 1,859 cf Average Runoff Depth = 0.66" 95.83% Pervious = 32,457 sf 4.17% Impervious = 1,412 sf

## 667710 Pre-Res HomeInside Out PaintingPrepared by SFC EngineeringType III 24-hr50-YR Rainfall=6.59"HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLCPage 10

#### Summary for Subcatchment 1E:

[49] Hint: Tc<2dt may require smaller dt

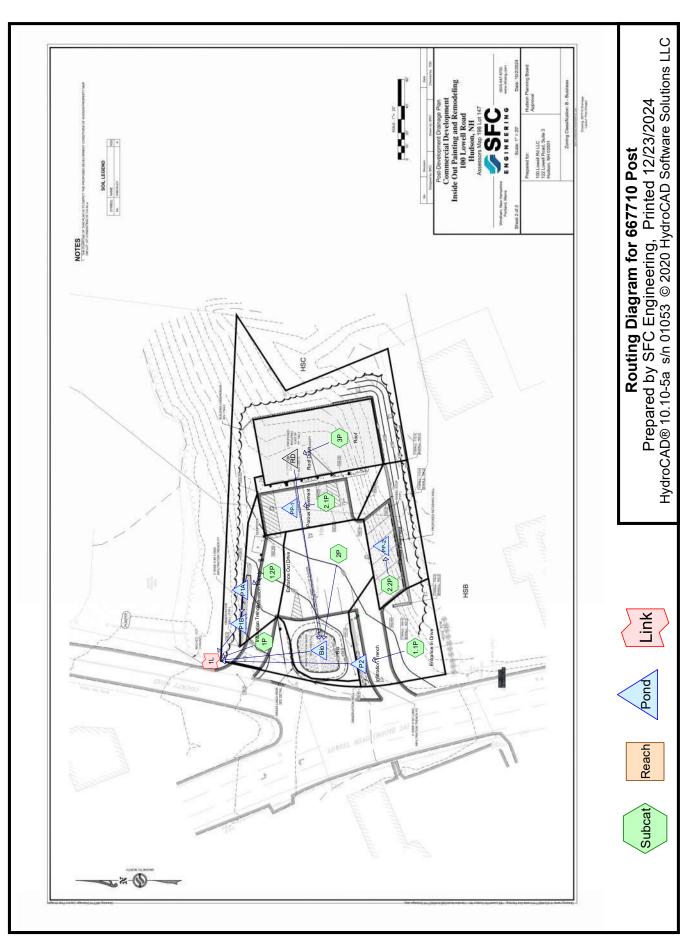
Runoff = 0.4 cfs @ 12.11 hrs, Volume=

1,859 cf, Depth> 0.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=6.59"

_	A	rea (sf)	CN /	Adj Desc	cription				
_		15,558	39	Past	Pasture/grassland/range, Good, HSG A				
		14,509	30	Woo	Woods, Good, HSG A				
		240	98		ed parking,				
		1,172	98			oofs, HSG A			
_		2,390	96	Grav	el surface,	HSG A			
		33,869	42			age, UI Adjusted			
		32,457			3% Perviou				
		1,412			% Impervio				
		1,172		83.0	0% Unconr	nected			
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
-	2.3	20	0.2500	0.15		Sheet Flow, Sheet Woods			
	-	-				Woods: Light underbrush n= 0.400 P2= 2.90"			
	0.3	38	0.2500	2.50		Shallow Concentrated Flow, Shallow Woods			
						Woodland Kv= 5.0 fps			
	1.2	150	0.0400	2.00		Shallow Concentrated Flow, Shallow Bare			
						Nearly Bare & Untilled Kv= 10.0 fps			
	0.2	30	0.2300	2.40		Shallow Concentrated Flow, Shallow Enbankment			
_	0.2	30		2.40		<b>2</b>			

4.1 238 Total


#### Summary for Link 1L:

Inflow Area =	33,869 sf, 4.17% Imp	ervious, Inflow Depth > (	0.66" for 50-YR event
Inflow =	0.4 cfs @ 12.11 hrs, V	/olume= 1,859 cf	
Primary =	0.4 cfs @ 12.11 hrs, V	/olume= 1,859 cf	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

## **APPENDIX D**

## POST-DEVELOPMENT HYDROLOGIC ANALYSIS



Inside Out Painting

667710 Post	
Prepared by SFC Engineering	
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC	

Printed 12/23/2024 Page 1

## Area Listing (all nodes)

Area	CN	Description	
(sq-ft)		(subcatchment-numbers)	
11,863	39	>75% Grass cover, Good, HSG A (1.1P, 1.2P, 1P, 2.1P, 2.2P, 2P)	
8,145	98	Paved parking, HSG A (1.1P, 1.2P, 1P, 2P)	
210	98	Retaining Wall, HSG A (2.2P)	
4,500	98	Roofs, HSG A (3P)	
4,185	98	Unconnected pavement, HSG A (2.1P, 2.2P)	
4,966	30	Woods, Good, HSG A (1.1P, 1P, 2.2P)	
33,869	67	TOTAL AREA	

Inside Out Painting

667710 Post	
Prepared by SFC Engineering	
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC	

Printed 12/23/2024 Page 2

## Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
33,869	HSG A	1.1P, 1.2P, 1P, 2.1P, 2.2P, 2P, 3P
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
33,869		TOTAL AREA

<b>667710 Post</b> Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 Hydro		Inside Out Painting 2-YR Rainfall=3.09" Printed 12/23/2024 Page 3
Runoff by SCS TR-	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind i	method
Subcatchment1.1P: Entrance In Drive	Runoff Area=4,316 sf 33.13% Imperviou Flow Length=70' Tc=1.3 min CN=57	
Subcatchment1.2P: Entrance Out Drive Flow Length=6	Runoff Area=2,560 sf 71.09% Imperviou 5' Slope=0.0730 '/' Tc=0.3 min CN=81	
Subcatchment1P:	Runoff Area=9,381 sf 6.93% Imperviou Flow Length=40' Tc=2.4 min CN=3	
Subcatchment2.1P:	Runoff Area=3,150 sf 83.65% Imperviou Tc=692.0 min CN=88	
Subcatchment2.2P:	Runoff Area=3,576 sf 49.22% Imperviou Tc=692.0 min CN=67	s Runoff Depth>0.12" Runoff=0.0 cfs 36 cf
Subcatchment2P:	Runoff Area=6,386 sf 66.47% Imperviou Flow Length=85' Tc=0.6 min CN=78	
Subcatchment3P: Roof Flow Length=40	Runoff Area=4,500 sf 100.00% Imperviou ' Slope=0.0200 '/' Tc=0.6 min CN=98 R	
Pond Bio: Bio Discarded=	Peak Elev=157.12' Storage=255 cf =0.2 cfs 1,590 cf Primary=0.0 cfs 0 cf Ou	
Pond P1A: Infiltration Trench	Peak Elev=154.39' Storage=52 cf ded=0.0 cfs 273 cf Primary=0.0 cfs 0 cf (	
Pond P1B: Infiltration Trench	Peak Elev=151.50' Storage=0 scarded=0.0 cfs 0 cf Primary=0.0 cfs 0 cf	
Pond P2: Infiltration Trench	Peak Elev=158.01' Storage=1 c arded=0.0 cfs  84 cf  Primary=0.0 cfs  0 cf	
Pond PP-1: Porous Pavement	Peak Elev=161.08' Storage=5 cf	Inflow=0.0 cfs 133 cf Outflow=0.0 cfs 128 cf
Pond PP-2: Porous Pavement	Peak Elev=160.92' Storage=1 c	of Inflow=0.0 cfs 36 cf Outflow=0.0 cfs 34 cf
Pond RD: Roof Drain 8.0" Round	Peak Elev=161.34' Culvert_n=0.012_L=115.0'_S=0.0261 '/'_Oi	Inflow=0.4 cfs 1,003 cf utflow=0.4 cfs 1,003 cf
Link 1L:		Inflow=0.0 cfs 0 cf Primary=0.0 cfs 0 cf
Total Runoff Area = 33,869	sf Runoff Volume = 2,113 cf Averag	e Runoff Depth = 0.75

Total Runoff Area = 33,869 sf Runoff Volume = 2,113 cf Average Runoff Depth = 0.75" 49.69% Pervious = 16,829 sf 50.31% Impervious = 17,040 sf

Inside Out Painting

Printed 12/23/2024

Page 4

Type III 24-hr 2-YR Rainfall=3.09" 667710 Post Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC

### Summary for Subcatchment 1.1P: Entrance In Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.0 cfs @ 12.24 hrs, Volume= 84 cf, Depth> 0.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.09"

A	rea (sf)	CN [	Description							
	1,430	98 F	98 Paved parking, HSG A							
	560	30 \	30 Woods, Good, HSG A							
	2,326	39 >	39 >75% Grass cover, Good, HSG A							
	4,316	57 \	Neighted A	verage						
	2,886	6	6.87% Pe	rvious Area						
	1,430	3	33.13% Imp	pervious Ar	ea					
Тс	Length	Slope			Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
1.1	20	0.2000	0.29		Sheet Flow, Sheet Grass					
					Grass: Short n= 0.150 P2= 2.90"					
0.0	12	0.6700	5.73		Shallow Concentrated Flow, Shallow Grass					
					Short Grass Pasture Kv= 7.0 fps					
0.1	18	0.2000	3.13		Shallow Concentrated Flow, Shallow Grass					
					Short Grass Pasture Kv= 7.0 fps					
0.1	20	0.0200	2.87		Shallow Concentrated Flow, Shallow Pavement					
					Paved Kv= 20.3 fps					
1.3	70	Total								

#### Summary for Subcatchment 1.2P: Entrance Out Drive

[49] Hint: Tc<2dt may require smaller dt

0.1 cfs @ 12.01 hrs, Volume= 273 cf, Depth> 1.28" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.09"

Area (sf)	CN	Description
1,820	98	Paved parking, HSG A
740	39	>75% Grass cover, Good, HSG A
2,560	81	Weighted Average
740		28.91% Pervious Area
1,820		71.09% Impervious Area

	d by SF				Inside Out Painting <i>Type III 24-hr 2-YR Rainfall=3.09"</i> Printed 12/23/2024			
HydroCA	D® 10.10	-5a s/n 0	1053 © 202	20 HydroCA	D Software Solutions LLC Page 5			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
0.2	20	0.0730	1.59		Sheet Flow, Sheet Pavement			
0.1	45	0.0730	5.48		Smooth surfaces n= 0.011 P2= 2.90" <b>Shallow Concentrated Flow, Shallow Pavement</b> Paved Kv= 20.3 fps			
0.3	65	Total						
	Summary for Subcatchment 1P:							
	: Tc<2dt : Runoff=		iire smallei	r dt				
Runoff	=	0.0 c	fs @ 5.0	0 hrs, Volu	ume= 0 cf, Depth= 0.00"			
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr  2-YR Rainfall=3.09"							
A	rea (sf)	CN E	Description					
	4,006	30 V	Voods, Go	od, HSG A				
	4,725	39 >	75% Gras	s cover, Go	bod, HSG A			
	650	98 F	aved park	ing, HSG A	١			
	9,381		Veighted A	0				
	8,731	-		rvious Area				
	650	6	.93% Impe	ervious Are	а			

	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.3	20	0.2500	0.15		Sheet Flow, Sheet Woods
						Woods: Light underbrush n= 0.400 P2= 2.90"
	0.1	20	0.3300	4.02		Shallow Concentrated Flow, Shallow Grass
_						Short Grass Pasture Kv= 7.0 fps
	~ 4	10	<b>—</b> · ·			

2.4 40 Total

### Summary for Subcatchment 2.1P:

[73] Warning: Peak may fall outside time span

Runoff = 0.0 cfs @ 20.00 hrs, Volume= 133 cf, Depth> 0.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.09"

667710 Post

Prepared by SFC Engineering

Inside Out Painting Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 6

rea (sf)	CN	Description			
2,635	98	Unconnecte	ed pavemei	nt, HSG A	
515	39	>75% Gras	s cover, Go	bod, HSG A	
3,150	88 Weighted Average				
515	5 16.35% Pervious Area				
2,635		83.65% Imp	ea		
2,635		100.00% U	nconnected	t i i i i i i i i i i i i i i i i i i i	
•		,		Description	
(feet)	(ft/ft	) (ft/sec)	(cfs)		
				Direct Entry, Porous Pavement	
	515 3,150 515 2,635	2,635 98 515 39 3,150 88 515 2,635 2,635 Length Slope	2,635         98         Unconnected           515         39         >75% Gras           3,150         88         Weighted A           515         16.35% Per           2,635         83.65% Imp           2,635         100.00% U           Length         Slope         Velocity	2,63598Unconnected pavement51539>75% Grass cover, Go3,15088Weighted Average51516.35% Pervious Area2,63583.65% Impervious Ar2,635100.00% UnconnectedLengthSlopeVelocityCapacity	

### Summary for Subcatchment 2.2P:

[73] Warning: Peak may fall outside time span

0.0 cfs @ 20.00 hrs, Volume= Runoff 36 cf, Depth> 0.12" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.09"

Α	rea (sf)	CN	Description						
	1,550	98	Unconnecte	ed pavemer	nt, HSG A				
	400	30	Woods, Go	od, HSG A					
	1,416	39	>75% Gras	>75% Grass cover, Good, HSG A					
*	210	98	Retaining Wall, HSG A						
	3,576	67	Weighted A						
	1,816		50.78% Pervious Area						
	1,760		49.22% Impervious Area						
	1,550		88.07% Un						
Тс	Length	Slope	Velocity	Capacity	Description				
_(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
692.0					Direct Entry, Porous Pavement				
					•				

#### Summary for Subcatchment 2P:

[49] Hint: Tc<2dt may require smaller dt

0.2 cfs @ 12.01 hrs, Volume= 585 cf, Depth> 1.10" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 2-YR Rainfall=3.09"

667710 Post

Prepared by SFC Engineering

Inside Out Painting Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 7

A	rea (sf)	CN D	escription						
	2,141 39 >75% Grass cover, Good, HSG A								
	4,245		98 Paved parking, HSG A						
	6,386		Veighted A						
	2,141			rvious Area					
	4,245	6	6.47% Imp	pervious Ar	ea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.3	20	0.0350	1.19		Sheet Flow, Sheet Pavement				
					Smooth surfaces n= 0.011 P2= 2.90"				
0.3	65	0.0400	4.06		Shallow Concentrated Flow, Shallow Pavement Paved Kv= 20.3 fps				
0.6	85	Total							
			Sum	mary for	Subcatchment 3P: Roof				
[49] Hint	: Tc<2dt	may requ	iire smallei	r dt					
Runoff	=	0.4 c	fs @ 12.0	)1 hrs, Volu	ume= 1,003 cf, Depth> 2.67"				
		R-20 met (R Rainfa		SCS, Weigh	nted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs				
А	rea (sf)	CN D	escription						
	4,500	98 F	Roofs, HSC	θA					
	4,500	1	00.00% In	npervious A	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
0.6	40	0.0200	1.09		Sheet Flow, Roof Sheet Smooth surfaces n= 0.011 P2= 2.90"				
[00] \\/.	Summary for Pond Bio: Bio								

[82] Warning: Early inflow requires earlier time span

Inflow Area =	10,886 sf, 80.33% Impervious,	Inflow Depth > 1.75" for 2-YR event
Inflow =	0.6 cfs @ 12.01 hrs, Volume=	1,587 cf
Outflow =	0.2 cfs @ 12.30 hrs, Volume=	1,590 cf, Atten= 69%, Lag= 17.2 min
Discarded =	0.2 cfs @ 12.30 hrs, Volume=	1,590 cf
Primary =	0.0 cfs $\overline{@}$ 5.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 157.12' @ 12.30 hrs Surf.Area= 650 sf Storage= 255 cf Flood Elev= 160.00' Surf.Area= 1,000 sf Storage= 1,831 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 7.5 min (768.6 - 761.1)

#### 667710 Post

Prepared by SFC Engineering

Inside Out Painting Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 8

Volume	Invert	Avai	il.Storage	e Storage Desci	Storage Description					
#1	156.00'		1,831 c	f Custom Stag	f Custom Stage Data (Pyramidal)Listed below (Recalc)					
Elevatio (fee 156.0 157.7	)0 75	rf.Area (sq-ft) 650 650	Voids (%) 0.0 35.0	Inc.Store (cubic-feet) 0 398	Cum.Store (cubic-feet) 0 398	Wet.Area (sq-ft) 650 828				
159.5	50	1,000	100.0	1,433	1,831	1,232				
Device #1 #2	Routing Discarded Primary	156	5.00' 10 5.00' 10 9.00' 10 10 2. Co	.0       1,433       1,831       1,232         Outlet Devices <b>10.000 in/hr Exfiltration over Wetted area</b> Phase-In= 0.01' <b>10.0' long x 2.0' breadth Broad-Crested Rectangular Weir</b> Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.0         Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88         2.85 3.07 3.20 3.32						
Discarded OutFlow Max=0.2 cfs @ 12.30 hrs HW=157.12' (Free Discharge)										

1=Exfiltration (Exfiltration Controls 0.2 cfs)

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=156.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir( Controls 0.0 cfs)

#### **Summary for Pond P1A: Infiltration Trench**

Inflow Area =	2,560 sf, 71.09% Impervious,	Inflow Depth > 1.28" for 2-YR event
Inflow =	0.1 cfs @ 12.01 hrs, Volume=	273 cf
Outflow =	0.0 cfs @ 12.31 hrs, Volume=	273 cf, Atten= 69%, Lag= 18.2 min
Discarded =	0.0 cfs @ 12.31 hrs, Volume=	273 cf
Primary =	0.0 cfs $\overline{@}$ 5.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 154.39' @ 12.31 hrs Surf.Area= 93 sf Storage= 52 cf

Plug-Flow detention time= 9.8 min calculated for 273 cf (100% of inflow) Center-of-Mass det. time= 9.6 min (807.7 - 798.1)

Volume	Invert	Avail.Sto	rage Storage	e Description		
#1	153.00'	14		i <b>(Pyramidal)</b> Listed Overall x 40.0% Vo		
Elevatio (fee		urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
153.0	0	93	0	0	93	
157.0	0	93	372	372	247	
Device	Routing	Invert	Outlet Device	es		
#1	Discarded	153.00'	10.000 in/hr	<b>Exfiltration over V</b>	Vetted area Phas	e-In= 0.01'
#2	Primary	156.95'	2.0' long x 2	2.0' breadth Broad	-Crested Rectang	ular Weir

	Inside Out Painting
667710 Post	Type III 24-hr 2-YR Rainfall=3.09"
Prepared by SFC Engineering	Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions L	_C Page 9

Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

**Discarded OutFlow** Max=0.0 cfs @ 12.31 hrs HW=154.39' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=153.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

#### Summary for Pond P1B: Infiltration Trench

Inflow Area =	2,560 sf,	71.09% Impervious,	Inflow Depth = 0.00" for 2-YR event
Inflow =	0.0 cfs @	5.00 hrs, Volume=	0 cf
Outflow =	0.0 cfs @	5.00 hrs, Volume=	0 cf, Atten= 0%, Lag= 0.0 min
Discarded =	0.0 cfs @	5.00 hrs, Volume=	0 cf
Primary =	0.0 cfs @	5.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 151.50' @ 5.00 hrs Surf.Area= 93 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avail.Stora	age Storage D	escription		
#1	151.50'	149		<b>Pyramidal)</b> Listed erall x 40.0% Voi		
Elevatio	et)		Inc.Store cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
151.5		93	0	0	93	
155.5	50	93	372	372	247	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	151.50'	10.000 in/hr Ex	filtration over W	letted area Phase-	In= 0.01'
#2	Primary		Head (feet) 0.2 2.50 3.00 3.50	20 0.40 0.60 0.8 2.54 2.61 2.61	<b>Crested Rectangul</b> 0 1.00 1.20 1.40 1 2.60 2.66 2.70 2.7	.60 1.80 2.00

**Discarded OutFlow** Max=0.0 cfs @ 5.00 hrs HW=151.50' (Free Discharge) **1=Exfiltration** (Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=151.50' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

		Inside (	Out Painting
667710 Post	Type III 24-hr	2-YR Ra	infall=3.09"
Prepared by SFC Engineering		Printed	12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions	LLC		Page 10

### **Summary for Pond P2: Infiltration Trench**

Inflow Area = Inflow = Outflow = Discarded = Primary =	0.0 cfs @ 0.0 cfs @ 0.0 cfs @	33.13% Impervious 12.24 hrs, Volume= 12.25 hrs, Volume= 12.25 hrs, Volume= 5.00 hrs, Volume=	= 84 = 84 = 84	cf cf, Atten= 0%, L cf	
		e Span= 5.00-20.00 Surf.Area= 110 sf		;/3	
		n calculated for 84 o n(877.5 - 876.9)	of (100% of inflow	/)	
Volume Ir	nvert Avail.Sto	orage Storage Des	scription		
#1 158	3.00' 1		a <b>ge Data (Pyram</b> all x 40.0% Voids		(Recalc)
Elevation (feet)	Surf.Area (sq-ft)		Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
158.00	110	0	0	110	
161.00	110	330	330	236	
Device Routin	g Invert	Outlet Devices			
#1 Discar	ded 158.00'	10.000 in/hr Exfi	Itration over We	tted area Phase	e-In= 0.01'
#2 Primai	y 159.90'	2.0' long x 2.0' k			
		Head (feet) 0.20	0.40 0.60 0.80	1.00 1.20 1.40	1.60 1.80 2.00
		2.50 3.00 3.50		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	77 0 00 0 00
		Coef. (English) 2 2.85 3.07 3.20 3		.60 2.66 2.70 2	.77 2.89 2.88
<b>Discarded OutFlow</b> Max=0.0 cfs @ 12.25 hrs HW=158.01' (Free Discharge)					

**1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=158.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir( Controls 0.0 cfs)

#### **Summary for Pond PP-1: Porous Pavement**

Inflow Area =	3,150 sf,	83.65% Impervious,	Inflow Depth > 0.51" for 2-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	133 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	128 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	128 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.08' @ 20.00 hrs Surf.Area= 2,176 sf Storage= 5 cf Flood Elev= 163.65' Surf.Area= 2,176 sf Storage= 2,110 cf

Plug-Flow detention time= 7.3 min calculated for 128 cf (96% of inflow) Center-of-Mass det. time= 2.5 min (1,069.2 - 1,066.6)

### 667710 Post

Prepared by SFC Engineering

Inside Out Painting Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 11

Volume	Invert	Ava	il.Storage	Storage Descrip	otion		
#1	161.07'		2,110 cf	Custom Stage	Data (Pyramidal)	isted below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
161.0	)7	2,176	0.0	0	0	2,176	
161.5	57	2,176	40.0	435	435	2,269	
161.8	32	2,176	35.0	190	626	2,316	
162.8	32	2,176	35.0	762	1,387	2,503	
163.6	65	2,176	40.0	722	2,110	2,657	
Device	Routing	In	vert Out	et Devices			
#1	Discarded	161	1.07' <b>1.00</b>	0 in/hr Exfiltratio	on over Surface a	rea Phase-In= 0.01'	

Discarded OutFlow Max=0.0 cfs @ 20.00 hrs HW=161.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

#### **Summary for Pond PP-2: Porous Pavement**

Inflow Area =	3,576 sf,	49.22% Impervious,	Inflow Depth > 0.12" for 2-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	36 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	34 cf, Atten= 2%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	34 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 160.92' @ 20.00 hrs Surf.Area= 1,550 sf Storage= 1 cf Flood Elev= 163.50' Surf.Area= 1,550 sf Storage= 1,503 cf

Plug-Flow detention time= 7.3 min calculated for 34 cf (96% of inflow) Center-of-Mass det. time= 2.3 min (1,084.3 - 1,082.0)

Volume	Invert	Ava	il.Storage	Storage Descri	ption		
#1	160.92'		1,503 cf	Custom Stage	Data (Pyramidal	Listed below (Recalc)	
Elevatio (feet		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
160.9	2	1,550	0.0	0	0	1,550	
161.4	2	1,550	40.0	310	310	1,629	
161.6	7	1,550	35.0	136	446	1,668	
162.6	7	1,550	35.0	543	988	1,826	
163.5	0	1,550	40.0	515	1,503	1,956	
Device	Routing			let Devices			
#1	Discarded	160	).92' <b>1.0</b> (	00 in/hr Exfiltrat	ion over Surface	area Phase-In= 0.01'	

**Discarded OutFlow** Max=0.0 cfs @ 20.00 hrs HW=160.92' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

667710 Post	Type III 24-hr	Out Painting ainfall=3.09"
Prepared by SFC Engineering		12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions L	LC	Page 12

#### Summary for Pond RD: Roof Drain

[82] Warning: Early inflow requires earlier time span [57] Hint: Peaked at 161.34' (Flood elevation advised)

Inflow Area =	4,500 sf,100.00% Impervious,	Inflow Depth > 2.67" for 2-YR event
Inflow =	0.4 cfs @ 12.01 hrs, Volume=	1,003 cf
Outflow =	0.4 cfs @ 12.01 hrs, Volume=	1,003 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.4 cfs @ 12.01 hrs, Volume=	1,003 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.34' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	161.00'	<b>8.0" Round Culvert</b> L= 115.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 161.00' / 158.00' S= 0.0261 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.35 sf

**Primary OutFlow** Max=0.3 cfs @ 12.01 hrs HW=161.33' (Free Discharge) **1=Culvert** (Inlet Controls 0.3 cfs @ 1.96 fps)

### Summary for Link 1L:

Inflow Are	a =	27,143 sf,	46.59% Impervious,	Inflow Depth = $0.00"$	for 2-YR event
Inflow	=	0.0 cfs @	5.00 hrs, Volume=	0 cf	
Primary	=	0.0 cfs @	5.00 hrs, Volume=	0 cf, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

<b>667710 Post</b> Prepared by SFC Engineering <u>HydroCAD® 10.10-5a_s/n 01053_© 2020 Hydro</u>	Inside Out Painting <i>Type III 24-hr 10-YR Rainfall=4.77"</i> Printed 12/23/2024 CAD Software Solutions LLC Page 13
Runoff by SCS TR-	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment1.1P: Entrance In Drive	Runoff Area=4,316 sf 33.13% Impervious Runoff Depth>0.88" Flow Length=70' Tc=1.3 min CN=57 Runoff=0.1 cfs 317 cf
Subcatchment1.2P: Entrance Out Drive Flow Length=6	Runoff Area=2,560 sf 71.09% Impervious Runoff Depth>2.61" 5' Slope=0.0730 '/' Tc=0.3 min CN=81 Runoff=0.2 cfs 556 cf
Subcatchment1P:	Runoff Area=9,381 sf 6.93% Impervious Runoff Depth>0.12" Flow Length=40' Tc=2.4 min CN=39 Runoff=0.0 cfs 94 cf
Subcatchment2.1P:	Runoff Area=3,150 sf 83.65% Impervious Runoff Depth>0.99" Tc=692.0 min CN=88 Runoff=0.0 cfs 259 cf
Subcatchment2.2P:	Runoff Area=3,576 sf 49.22% Impervious Runoff Depth>0.36" Tc=692.0 min CN=67 Runoff=0.0 cfs 109 cf
Subcatchment2P:	Runoff Area=6,386 sf   66.47% Impervious   Runoff Depth>2.35" Flow Length=85'   Tc=0.6 min   CN=78   Runoff=0.5 cfs  1,249 cf
Subcatchment3P: Roof Flow Length=40	Runoff Area=4,500 sf 100.00% Impervious Runoff Depth>4.21" Slope=0.0200 '/' Tc=0.6 min CN=98 Runoff=0.5 cfs 1,579 cf
Pond Bio: Bio Discarded	Peak Elev=158.21' Storage=717 cf Inflow=1.0 cfs 2,828 cf =0.2 cfs 2,827 cf Primary=0.0 cfs 0 cf Outflow=0.2 cfs 2,827 cf
Pond P1A: Infiltration Trench	Peak Elev=156.91' Storage=145 cf Inflow=0.2 cfs 556 cf led=0.1 cfs 556 cf Primary=0.0 cfs 0 cf Outflow=0.1 cfs 556 cf
Pond P1B: Infiltration Trench	Peak Elev=151.50' Storage=0 cf Inflow=0.0 cfs 0 cf scarded=0.0 cfs 0 cf Primary=0.0 cfs 0 cf Outflow=0.0 cfs 0 cf
Pond P2: Infiltration Trench	Peak Elev=159.17' Storage=51 cf Inflow=0.1 cfs 317 cf ded=0.0 cfs 317 cf Primary=0.0 cfs 0 cf Outflow=0.0 cfs 317 cf
Pond PP-1: Porous Pavement	Peak Elev=161.08' Storage=9 cf Inflow=0.0 cfs 259 cf Outflow=0.0 cfs 250 cf
Pond PP-2: Porous Pavement	Peak Elev=160.93' Storage=4 cf Inflow=0.0 cfs 109 cf Outflow=0.0 cfs 104 cf
Pond RD: Roof Drain 8.0" Round	Peak Elev=161.44' Inflow=0.5 cfs 1,579 cf Culvert n=0.012 L=115.0' S=0.0261 '/' Outflow=0.5 cfs 1,579 cf
Link 1L:	Inflow=0.0 cfs  94 cf Primary=0.0 cfs  94 cf
Total Runoff Area = 33.869	sf Runoff Volume = 4.162 cf Average Runoff Depth = 1.47

Total Runoff Area = 33,869 sf Runoff Volume = 4,162 cf Average Runoff Depth = 1.47" 49.69% Pervious = 16,829 sf 50.31% Impervious = 17,040 sf

667710 Post	Type III 24-hr	Inside Out Painting 10-YR Rainfall=4.77"
Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutior		Printed 12/23/2024 Page 14

#### Summary for Subcatchment 1.1P: Entrance In Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.1 cfs @ 12.04 hrs, Volume= 317 cf, Depth> 0.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.77"

A	rea (sf)	CN I	Description		
	1,430	98	Paved park	ing, HSG A	A Contraction of the second seco
	560	30	Woods, Go	od, HSG A	
	2,326	39 :	>75% Gras	s cover, Go	bod, HSG A
	4,316	57	Weighted A	verage	
	2,886	(	6.87% Pe	rvious Area	l
	1,430		33.13% Imj	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.1	20	0.2000	0.29		Sheet Flow, Sheet Grass
					Grass: Short n= 0.150 P2= 2.90"
0.0	12	0.6700	5.73		Shallow Concentrated Flow, Shallow Grass
					Short Grass Pasture Kv= 7.0 fps
0.1	18	0.2000	3.13		Shallow Concentrated Flow, Shallow Grass
					Short Grass Pasture Kv= 7.0 fps
0.1	20	0.0200	2.87		Shallow Concentrated Flow, Shallow Pavement
					Paved Kv= 20.3 fps
1.3	70	Total			

#### Summary for Subcatchment 1.2P: Entrance Out Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.2 cfs @ 12.01 hrs, Volume= 556 cf, Depth> 2.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.77"

Area (sf)	CN	Description
1,820	98	Paved parking, HSG A
740	39	>75% Grass cover, Good, HSG A
2,560	81	Weighted Average
740		28.91% Pervious Area
1,820		71.09% Impervious Area

	d by SF	C Engine -5a s/n 01		20 HydroCA	Inside Out Painting <i>Type III 24-hr 10-YR Rainfall=4</i> .77" Printed 12/23/2024 D Software Solutions LLC Page 15
	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.2	20 45	0.0730	1.59 5.48		Sheet Flow, Sheet Pavement Smooth surfaces n= 0.011 P2= 2.90" Shallow Concentrated Flow, Shallow Pavement
0.1	65	Total	5.40		Paved Kv= 20.3 fps
			Su	mmary fo	or Subcatchment 1P:
[49] Hint	: Tc<2dt	may requ	ire smallei	r dt	
Runoff	=	0.0 cf	s@ 13.6	64 hrs, Volu	ume= 94 cf, Depth> 0.12"
		R-20 meth YR Rainf		SCS, Weigh	nted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
A	rea (sf)	CN D	escription		
	4,006		,	od, HSG A	
	4,725 650			s cover, Go ing, HSG A	bod, HSG A
	9,381		/eighted A	<u>u</u>	
	8,731			rvious Area	I
	650	6	.93% Impe	ervious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.3	20	0.2500	0.15	\/_	Sheet Flow, Sheet Woods
0.1	20	0.3300	4.02		Woods: Light underbrush n= 0.400 P2= 2.90" <b>Shallow Concentrated Flow, Shallow Grass</b> Short Grass Pasture Kv= 7.0 fps

2.4 40 Total

### Summary for Subcatchment 2.1P:

[73] Warning: Peak may fall outside time span

Runoff = 0.0 cfs @ 20.00 hrs, Volume= 259 cf, Depth> 0.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.77"

Area (sf)	CN	Description
2,635	98	Unconnected pavement, HSG A
515	39	>75% Grass cover, Good, HSG A
3,150	88	Weighted Average
515		16.35% Pervious Area
2,635		83.65% Impervious Area
2,635		100.00% Unconnected

<b>667710</b> Prepared <u>HydroCAD</u>	by SFC			20 HydroCA	D Software Solut		Inside Out Painting 10-YR Rainfall=4.77" Printed 12/23/2024 Page 16	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
692.0					Direct Entry,	Porous Pavement		
	Summary for Subcatchment 2.2P:							
[73] Warn	ing: Peak	a may fal	I outside t	time span				
Runoff	=	0.0 cf	s@ 20.0	00 hrs, Volu	ume=	109 cf, Depth> 0.	36"	
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr  10-YR Rainfall=4.77"								
Δre	∍a (sf)	CN D	escription					

P	rea (st)	CN	Description				
	1,550	98	Unconnecte	ed pavemer	nt, HSG A		
	400	30	Woods, Go	od, HSG A			
	1,416	39	>75% Gras	s cover, Go	bod, HSG A		
*	210	98	Retaining V	Vall, HSG A	A		
	3,576	67	Weighted A	verage			
	1,816		50.78% Pe		1		
	1,760	60 49.22% Impervious Area					
	1,550		88.07% Un	connected			
Тс	Length	Slope	e Velocity	Capacity	Description		
(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)			
692.0					Direct Entry, Porous Pavement		
					-		

### Summary for Subcatchment 2P:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.5 cfs @ 12.01 hrs, Volume= 1,249 cf, Depth> 2.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 10-YR Rainfall=4.77"

Area (sf)	CN	Description
2,141	39	>75% Grass cover, Good, HSG A
4,245	98	Paved parking, HSG A
6,386	78	Weighted Average
2,141		33.53% Pervious Area
4,245		66.47% Impervious Area

<b>667710 Pos</b> Prepared by HydroCAD® 10	SFC Engine		20 HydroCAl	Inside Out Painting <i>Type III 24-hr 10-YR Rainfall=4</i> .77" Printed 12/23/2024 D Software Solutions LLC Page 17		
Tc Leng (min) (fe		Velocity (ft/sec)	Capacity (cfs)	Description		
	<ol> <li>0.0350</li> <li>0.0400</li> </ol>	1.19 4.06		Sheet Flow, Sheet Pavement Smooth surfaces n= 0.011 P2= 2.90" Shallow Concentrated Flow, Shallow Pavement Paved Kv= 20.3 fps		
0.6	85 Total					
		Sum	mary for	Subcatchment 3P: Roof		
			-			
[49] Hint: Tc<2	2dt may requ	iire smallei	r dt			
Runoff =	0.5 c	fs @ 12.0	)1 hrs, Volu	ume= 1,579 cf, Depth> 4.21"		
Runoff by SCS Type III 24-hr			SCS, Weigh	nted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs		
Area (s	f) CN E	Description				
4,50		Roofs, HSC				
4,50	0 1	00.00% In	npervious A	Irea		
Tc Leng (min) (fe	<i>,</i> ,	Velocity (ft/sec)	Capacity (cfs)	Description		
0.6						
Summary for Pond Bio: Bio						
[82] Warning: Early inflow requires earlier time span [79] Warning: Submerged Pond RD Primary device # 1 OUTLET by 0.21'						

Inflow Area =	10,886 sf, 80.33% Impervious	, Inflow Depth > 3.12" for 10-YR event
Inflow =	1.0 cfs @ 12.01 hrs, Volume:	= 2,828 cf
Outflow =	0.2 cfs @ 12.40 hrs, Volume	= 2,827 cf, Atten= 79%, Lag= 23.7 min
Discarded =	0.2 cfs @ 12.40 hrs, Volume	= 2,827 cf
Primary =	0.0 cfs @ 5.00 hrs, Volume	= 0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 158.21' @ 12.40 hrs Surf.Area= 735 sf Storage= 717 cf Flood Elev= 160.00' Surf.Area= 1,000 sf Storage= 1,831 cf

Plug-Flow detention time= 21.1 min calculated for 2,826 cf (100% of inflow) Center-of-Mass det. time= 20.8 min (777.6 - 756.8 )

Volume	Invert	Avail.Storage	Storage Description
#1	156.00'	1,831 cf	Custom Stage Data (Pyramidal)Listed below (Recalc)

667710 Post		Tvo	Insi e III 24-hr 10-YR	de Out Painting Rainfall=4 77"	
Prepared by SFC Engineering		190		ted 12/23/2024	
HydroCAD® 10.10-5a s/n 01053 ©	2020 HydroCAD Softw	vare Solutions LLC		Page 18	
Elevation Surf.Area Voi	ls Inc.Store	Cum.Store	Wet.Area		
	(cubic-feet)	(cubic-feet)	(sq-ft)		
	0 0	0	650		
157.75 650 35	0 398	398	828		
159.50 1,000 100	.0 1,433	1,831	1,232		
Device Routing Invert	Outlet Devices				
#1 Discarded 156.00'	10.000 in/hr Exfiltr	ation over Wette	<b>d area</b> Phase-In=	: 0.01'	
#2 Primary 159.00'	10.0' long x 2.0' b				
	Head (feet) 0.20 0	.40 0.60 0.80 1.0	00 1.20 1.40 1.60	0 1.80 2.00	
	2.50 3.00 3.50 Coef. (English) 2.5	1 2 61 2 61 2 60		<u>, , , , , , , , , , , , , , , , , , , </u>	
	2.85 3.07 3.20 3.3		2.00 2.70 2.77	2.09 2.00	
	2.00 0.01 0.20 0.	52			
Discarded OutFlow Max=0.2 cfs		58.21' (Free Disc	harge)		
Primary OutFlow Max=0.0 cfs @ 2-2=Broad-Crested Rectangula			ge)		
Sum	nary for Pond P1	A: Infiltration	Trench		
	1.09% Impervious,		61" for 10-YR e	vent	
	2.01 hrs, Volume=	556 cf	Atton $740/1$ or	- 00 7 min	
	2.35 hrs, Volume= 2.35 hrs, Volume=	556 cl, 556 cf	Atten= 74%, Lag=	- 20.7 min	
	5.00 hrs, Volume=	0 cf			
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 156.91' @ 12.35 hrs Surf.Area= 93 sf Storage= 145 cf					
	Plug-Flow detention time= 20.7 min calculated for 556 cf (100% of inflow) Center-of-Mass det. time= 20.5 min ( 802.4 - 781.9 )				
Volume Invert Avail.Sto	age Storage Desc	ription			
		midal)Listed below	v (Recalc)		

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)
153.00	93	0	0	93
157.00	93	372	372	247

Device	Routing	Invert	Outlet Devices
#1	Discarded	153.00'	10.000 in/hr Exfiltration over Wetted area Phase-In= 0.01'
#2	Primary	156.95'	2.0' long x 2.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00 3.50
			Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88
			2.85 3.07 3.20 3.32

		Inside Out Painting
667710 Post	Type III 24-hr	10-YR Rainfall=4.77"
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions	LLC	Page 19

**Discarded OutFlow** Max=0.1 cfs @ 12.35 hrs HW=156.91' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=153.00' (Free Discharge) 2=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

#### **Summary for Pond P1B: Infiltration Trench**

Inflow Area =	2,560 sf,	71.09% Impervious,	Inflow Depth = 0.00" for 10-YR event
Inflow =	0.0 cfs @	5.00 hrs, Volume=	0 cf
Outflow =	0.0 cfs @	5.00 hrs, Volume=	0 cf, Atten= 0%, Lag= 0.0 min
Discarded =	0.0 cfs @	5.00 hrs, Volume=	0 cf
Primary =	0.0 cfs @	5.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 151.50' @ 5.00 hrs Surf.Area= 93 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Invert	Avail.Sto	orage Storage	age Storage Description				
#1	151.50'	1		(Pyramidal)Listed	( )			
			372 cf O	verall x 40.0% Vo	ids			
Elevatio	on Su	ırf.Area	Inc.Store	Cum.Store	Wet.Area			
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)			
151.5	50	93	0	0	93			
155.5	50	93	372	372	247			
Dovice	Pouting	Invort	Outlat Davias	2				
Device	Routing		Outlet Device					
#1	Discarded	151.50'			Vetted area Phas			
#2	Primary	155.40'			-Crested Rectang			
			Head (feet) 0	.20 0.40 0.60 0.8	30 1.00 1.20 1.40	1.60 1.80 2.00		
			2.50 3.00 3.5	50				
			Coef. (English	) 2.54 2.61 2.61	2.60 2.66 2.70 2	2.77 2.89 2.88		
			2.85 3.07 3.2					
Discarded OutFlow Max=0.0 cfs @ 5.00 hrs HW=151.50' (Free Discharge)								

**1=Exfiltration** (Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=151.50' (Free Discharge) —2=Broad-Crested Rectangular Weir( Controls 0.0 cfs)

667710 Post	Type III 24-hr	Inside Out Painting 10-YR Rainfall=4.77"
Prepared by SFC Engineering	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	ons LLC	Page 20

### **Summary for Pond P2: Infiltration Trench**

Inflow         =         0.1 cfs @           Outflow         =         0.0 cfs @	<ul> <li>12.04 hrs, Volume</li> <li>12.40 hrs, Volume</li> <li>12.40 hrs, Volume</li> </ul>	= 317 cf = 317 cf, = 317 cf	.88" for 10-YR event Atten= 65%, Lag= 21.2 min		
Routing by Stor-Ind method, T Peak Elev= 159.17' @ 12.40 h			3		
Plug-Flow detention time= (no Center-of-Mass det. time= 8.2	min ( 843.2 - 835.0 )	,			
Volume Invert Avail.	Storage Storage De	scription			
#1 158.00'	132 cf Custom St	age Data (Pyramid	al)Listed below (Recalc)		
		all x 40.0% Voids	, , , ,		
Elevation Surf.Area	Inc.Store	Cum.Store	Wet.Area		
(feet) (sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)		
158.00 110	0	0	110		
161.00 110	330	330	236		
101.00 110	550	000	200		
Device Routing Inv	ert Outlet Devices				
#1 Discarded 158.0	-	iltration over Wett	ed area Phase-In= 0.01'		
#2 Primary 159.			sted Rectangular Weir		
#Z Filliary 159.					
		0.40 0.00 0.00 1	.00 1.20 1.40 1.60 1.80 2.00		
	2.50 3.00 3.50				
			0 2.66 2.70 2.77 2.89 2.88		
	2.85 3.07 3.20	3.32			
Discarded OutFlow Max=0.0 cfs @ 12.40 hrs HW=159.16' (Free Discharge)					

arded OutFlow Max=0.0 cfs @ 12.40 hrs HW=159.16' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

**Primary OutFlow** Max=0.0 cfs @ 5.00 hrs HW=158.00' (Free Discharge) **2=Broad-Crested Rectangular Weir**(Controls 0.0 cfs)

#### **Summary for Pond PP-1: Porous Pavement**

Inflow Area =	3,150 sf,	83.65% Impervious,	Inflow Depth > 0.99" for 10-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	259 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	250 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	250 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.08' @ 20.00 hrs Surf.Area= 2,176 sf Storage= 9 cf Flood Elev= 163.65' Surf.Area= 2,176 sf Storage= 2,110 cf

Plug-Flow detention time= 7.3 min calculated for 249 cf (96% of inflow) Center-of-Mass det. time= 2.5 min (1,061.3 - 1,058.8)

#### 667710 Post

Prepared by SFC Engineering

Inside Out Painting Type III 24-hr 10-YR Rainfall=4.77" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 21

Volume	Invert	Ava	il.Storage	Storage Descrip	otion		
#1	161.07'		2,110 cf	Custom Stage	Data (Pyramidal)Li	sted below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
161.0	7	2,176	0.0	0	0	2,176	
161.5	57	2,176	40.0	435	435	2,269	
161.8	2	2,176	35.0	190	626	2,316	
162.8	2	2,176	35.0	762	1,387	2,503	
163.6	5	2,176	40.0	722	2,110	2,657	
Device	Routing	In	vert Outl	et Devices			
#1	Discarded	161	1.07' <b>1.00</b>	0 in/hr Exfiltrati	on over Surface a	rea Phase-In= 0.01'	

Discarded OutFlow Max=0.0 cfs @ 20.00 hrs HW=161.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

#### **Summary for Pond PP-2: Porous Pavement**

Inflow Area =	3,576 sf,	49.22% Impervious,	Inflow Depth > 0.36" for 10-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	109 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	104 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	104 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 160.93' @ 20.00 hrs Surf.Area= 1,550 sf Storage= 4 cf Flood Elev= 163.50' Surf.Area= 1,550 sf Storage= 1,503 cf

Plug-Flow detention time= 7.3 min calculated for 104 cf (96% of inflow) Center-of-Mass det. time= 2.4 min ( 1,080.0 - 1,077.5 )

Volume	Invert	Ava	il.Storage	Storage Description						
#1	160.92'		1,503 cf	Custom Stage	Custom Stage Data (Pyramidal)Listed below (Recalc)					
Elevatio (feet		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)				
160.9	2	1,550	0.0	0	0	1,550				
161.4	2	1,550	40.0	310	310	1,629				
161.6	7	1,550	35.0	136	446	1,668				
162.6	7	1,550	35.0	543	988	1,826				
163.5	0	1,550	40.0	515	1,503	1,956				
Device	Routing			let Devices		Dhara ha 0.04				
#1	Discarded	160	).92' <b>1.0</b> (	00 in/hr Exfiltrati	ion over Surface	area Phase-In= 0.01'				

**Discarded OutFlow** Max=0.0 cfs @ 20.00 hrs HW=160.93' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

667710 Post	Type III 24-hr	Inside Out Painting 10-YR Rainfall=4.77"
667710 FOSL	1 ype 111 24-111	10-11X IXaiiiiaii <del>-4</del> .77
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	ons LLC	Page 22

#### Summary for Pond RD: Roof Drain

[82] Warning: Early inflow requires earlier time span [57] Hint: Peaked at 161.44' (Flood elevation advised)

Inflow Area =	4,500 sf,100.00% Impervious,	Inflow Depth > 4.21" for 10-YR event
Inflow =	0.5 cfs @ 12.01 hrs, Volume=	1,579 cf
Outflow =	0.5 cfs @ 12.01 hrs, Volume=	1,579 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.5 cfs @ 12.01 hrs, Volume=	1,579 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.44' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	161.00'	<b>8.0" Round Culvert</b> L= 115.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 161.00' / 158.00' S= 0.0261 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.35 sf

**Primary OutFlow** Max=0.5 cfs @ 12.01 hrs HW=161.43' (Free Discharge) **1=Culvert** (Inlet Controls 0.5 cfs @ 2.23 fps)

#### Summary for Link 1L:

Inflow Are	a =	27,143 sf,	46.59% Impervious,	Inflow Depth > 0.04" for 10-YR event
Inflow	=	0.0 cfs @	13.64 hrs, Volume=	94 cf
Primary	=	0.0 cfs @	13.64 hrs, Volume=	94 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

<b>667710 Post</b> Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 Hydrod	Inside Out Painting <i>Type III 24-hr 25-YR Rainfall=5.82"</i> Printed 12/23/2024 CAD Software Solutions LLC Page 23
Runoff by SCS TR-	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment1.1P: Entrance In Drive	Runoff Area=4,316 sf 33.13% Impervious Runoff Depth>1.42" Flow Length=70' Tc=1.3 min CN=57 Runoff=0.2 cfs 511 cf
Subcatchment1.2P: Entrance Out Drive Flow Length=6	Runoff Area=2,560 sf 71.09% Impervious Runoff Depth>3.50" 5' Slope=0.0730 '/' Tc=0.3 min CN=81 Runoff=0.3 cfs 746 cf
Subcatchment1P:	Runoff Area=9,381 sf 6.93% Impervious Runoff Depth>0.33" Flow Length=40' Tc=2.4 min CN=39 Runoff=0.0 cfs 258 cf
Subcatchment2.1P:	Runoff Area=3,150 sf 83.65% Impervious Runoff Depth>1.31" Tc=692.0 min CN=88 Runoff=0.0 cfs 343 cf
Subcatchment2.2P:	Runoff Area=3,576 sf 49.22% Impervious Runoff Depth>0.56" Tc=692.0 min CN=67 Runoff=0.0 cfs 166 cf
Subcatchment2P:	Runoff Area=6,386 sf   66.47% Impervious   Runoff Depth>3.20" Flow Length=85'   Tc=0.6 min   CN=78   Runoff=0.7 cfs   1,704 cf
Subcatchment3P: Roof Flow Length=40'	Runoff Area=4,500 sf 100.00% Impervious Runoff Depth>5.17" Slope=0.0200 '/' Tc=0.6 min CN=98 Runoff=0.7 cfs 1,937 cf
Pond Bio: Bio Discarded=	Peak Elev=158.63' Storage=1,046 cf Inflow=1.3 cfs 3,642 cf 0.2 cfs 3,644 cf Primary=0.0 cfs 0 cf Outflow=0.2 cfs 3,644 cf
Pond P1A: Infiltration Trench Discarde	Peak Elev=157.03' Storage=149 cf Inflow=0.3 cfs 746 cf ed=0.1 cfs 670 cf Primary=0.1 cfs 58 cf Outflow=0.2 cfs 727 cf
Pond P1B: Infiltration Trench	Peak Elev=152.15' Storage=24 cf Inflow=0.1 cfs 58 cf arded=0.0 cfs 56 cf Primary=0.0 cfs 0 cf Outflow=0.0 cfs 56 cf
Pond P2: Infiltration Trench Discarde	Peak Elev=159.95' Storage=86 cf Inflow=0.2 cfs 511 cf d=0.0 cfs 473 cf Primary=0.1 cfs 39 cf Outflow=0.1 cfs 512 cf
Pond PP-1: Porous Pavement	Peak Elev=161.08' Storage=11 cf Inflow=0.0 cfs 343 cf Outflow=0.0 cfs 332 cf
Pond PP-2: Porous Pavement	Peak Elev=160.93' Storage=6 cf Inflow=0.0 cfs 166 cf Outflow=0.0 cfs 160 cf
Pond RD: Roof Drain 8.0" Round (	Peak Elev=161.50' Inflow=0.7 cfs 1,937 cf Culvert n=0.012 L=115.0' S=0.0261 '/' Outflow=0.7 cfs 1,937 cf
Link 1L:	Inflow=0.1 cfs 297 cf Primary=0.1 cfs 297 cf
Total Runoff Area = 33.869	sf Runoff Volume = 5.666 cf Average Runoff Depth = 2.01

Total Runoff Area = 33,869 sf Runoff Volume = 5,666 cf Average Runoff Depth = 2.01" 49.69% Pervious = 16,829 sf 50.31% Impervious = 17,040 sf

667710 Doot	Type III 24 hr	Inside Out Painting 25-YR Rainfall=5.82"
667710 Post	1 ype 111 24-111	25-1 R Raimaii-5.02
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions	LLC	Page 24

#### Summary for Subcatchment 1.1P: Entrance In Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.2 cfs @ 12.04 hrs, Volume= 511 cf, Depth> 1.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.82"

A	rea (sf)	CN I	Description		
	1,430	98	Paved park	ing, HSG A	A Contraction of the second seco
	560	30	Woods, Go	od, HSG A	
	2,326	39 :	>75% Gras	s cover, Go	bod, HSG A
	4,316	57	Weighted A	verage	
	2,886	(	6.87% Pe	rvious Area	l
	1,430		33.13% Imj	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.1	20	0.2000	0.29		Sheet Flow, Sheet Grass
					Grass: Short n= 0.150 P2= 2.90"
0.0	12	0.6700	5.73		Shallow Concentrated Flow, Shallow Grass
					Short Grass Pasture Kv= 7.0 fps
0.1	18	0.2000	3.13		Shallow Concentrated Flow, Shallow Grass
					Short Grass Pasture Kv= 7.0 fps
0.1	20	0.0200	2.87		Shallow Concentrated Flow, Shallow Pavement
					Paved Kv= 20.3 fps
1.3	70	Total			

#### Summary for Subcatchment 1.2P: Entrance Out Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.3 cfs @ 12.01 hrs, Volume= 746 cf, Depth> 3.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.82"

Area (sf)	CN	Description
1,820	98	Paved parking, HSG A
740	39	>75% Grass cover, Good, HSG A
2,560	81	Weighted Average
740		28.91% Pervious Area
1,820		71.09% Impervious Area

	d by SF	C Engine 5a s/n 01		20 HydroCAl	Inside Out Painting <i>Type III 24-hr 25-YR Rainfall=5.82"</i> Printed 12/23/2024 D Software Solutions LLC Page 25
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.2 0.1	20 45	0.0730 0.0730	1.59 5.48		Sheet Flow, Sheet Pavement Smooth surfaces n= 0.011 P2= 2.90" Shallow Concentrated Flow, Shallow Pavement
0.3	65	Total			Paved Kv= 20.3 fps
			Su	mmary fo	or Subcatchment 1P:
[49] Hint	: Tc<2dt	may requ	ire smaller	⁻ dt	
Runoff	=	0.0 cf	s@ 12.3	81 hrs, Volu	ume= 258 cf, Depth> 0.33"
			nod, UH=S fall=5.82"	SCS, Weigh	nted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
Α	rea (sf)		escription		
	4,006 4,725 650	39 >	75% Gras	od, HSG A s cover, Gc ing, HSG A	bod, HSG A
	9,381 8,731 650	9		verage vious Area ervious Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.3 0.1	20 20	0.2500	0.15 4.02	(0.0)	Sheet Flow, Sheet Woods Woods: Light underbrush n= 0.400 P2= 2.90" Shallow Concentrated Flow, Shallow Grass Short Grass Pasture Kv= 7.0 fps

2.4 40 Total

### Summary for Subcatchment 2.1P:

[73] Warning: Peak may fall outside time span

Runoff = 0.0 cfs @ 20.00 hrs, Volume= 343 cf, Depth> 1.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.82"

Area (sf)	CN	Description
2,635	98	Unconnected pavement, HSG A
515	39	>75% Grass cover, Good, HSG A
3,150	88	Weighted Average
515		16.35% Pervious Area
2,635		83.65% Impervious Area
2,635		100.00% Unconnected

	9 <b>Post</b> d by SFC D® 10.10-5				Inside Out Painting 25-YR Rainfall=5.82" Printed 12/23/2024 Page 26				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
692.0					Direct Entry,	Porous Pavement			
	Summary for Subcatchment 2.2P:								
[73] War	ning: Peal	c may fall	outside t	ime span					
Runoff	=	0.0 cfs	s@ 20.0	0 hrs, Vol	ume=	166 cf, Depth> 0.5	56"		
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr  25-YR Rainfall=5.82"									

A	rea (sf)	CN	Description					
	1,550	98	Unconnecte	ed pavemer	ent, HSG A			
	400	30	Woods, Go	od, HSG A	N			
	1,416	39	>75% Gras	s cover, Go	ood, HSG A			
*	210	98	Retaining V	Vall, HSG A	Ą			
	3,576	67	Weighted A	verage				
	1,816		50.78% Pe	rvious Area	a			
	1,760		49.22% Impervious Area					
	1,550		88.07% Unconnected					
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
692.0					Direct Entry, Porous Pavement			
					-			

### Summary for Subcatchment 2P:

[49] Hint: Tc<2dt may require smaller dt

Runoff 0.7 cfs @ 12.01 hrs, Volume= 1,704 cf, Depth> 3.20" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25-YR Rainfall=5.82"

Area (sf)	CN	Description
2,141	39	>75% Grass cover, Good, HSG A
4,245	98	Paved parking, HSG A
6,386	78	Weighted Average
2,141		33.53% Pervious Area
4,245		66.47% Impervious Area

	d by SF	C Engine -5a_s/n 01		20 HydroCAI	Inside Out Painting <i>Type III 24-hr 25-YR Rainfall=5.82"</i> Printed 12/23/2024 D Software Solutions LLC Page 27		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
0.3 0.3	20 65	0.0350 0.0400	1.19 4.06		Sheet Flow, Sheet Pavement Smooth surfaces n= 0.011 P2= 2.90" Shallow Concentrated Flow, Shallow Pavement Paved Kv= 20.3 fps		
0.6	85	Total					
[49] Hint	Summary for Subcatchment 3P: Roof [49] Hint: Tc<2dt may require smaller dt						
Runoff	=	0.7 ct	fs @ 12.0	)1 hrs, Volu	ume= 1,937 cf, Depth> 5.17"		
			hod, UH=S fall=5.82"	SCS, Weigh	nted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs		
A	rea (sf)	CN D	escription				
	4,500	98 R	Roofs, HSC	βA			
	4,500	1	00.00% In	npervious A	vrea		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
0.6	40	0.0200	1.09		Sheet Flow, Roof Sheet Smooth surfaces n= 0.011 P2= 2.90"		
	Summary for Pond Bio: Bio						
	[82] Warning: Early inflow requires earlier time span [79] Warning: Submerged Pond RD Primary device # 1 OUTLET by 0.63'						

Inflow Area =	10,886 sf, 80.33% Impervious,	Inflow Depth > 4.01" for 25-YR event
Inflow =	1.3 cfs @ 12.01 hrs, Volume=	3,642 cf
Outflow =	0.2 cfs @ 12.44 hrs, Volume=	3,644 cf, Atten= 82%, Lag= 25.7 min
Discarded =	0.2 cfs @ 12.44 hrs, Volume=	3,644 cf
Primary =	0.0 cfs @ 5.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 158.63' @ 12.44 hrs Surf.Area= 818 sf Storage= 1,046 cf Flood Elev= 160.00' Surf.Area= 1,000 sf Storage= 1,831 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 30.1 min (784.5 - 754.3 )

Volume	Invert	Avail.Storage	Storage Description
#1	156.00'	1,831 cf	Custom Stage Data (Pyramidal)Listed below (Recalc)

Prepare	Inside Out Painting667710 PostType III 24-hr25-YR Rainfall=5.82"Prepared by SFC EngineeringPrinted 12/23/2024HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLCPage 28							
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)		Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
156.0 157.7 159.5	75	650 650 1,000	0.0 35.0 100.0	398	0 398 1,831	650 828 1,232		
Device #1 #2	#1 Discarded 156.00' <b>10.000 in/hr Exfiltration over Wetted area</b> Phase-In= 0.01'							
	<b>Discarded OutFlow</b> Max=0.2 cfs @ 12.44 hrs HW=158.63' (Free Discharge) <b>1=Exfiltration</b> (Exfiltration Controls 0.2 cfs)							

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=156.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir( Controls 0.0 cfs)

### **Summary for Pond P1A: Infiltration Trench**

[93] Warning: Storage range exceeded by 0.03'

Inflow Area =	2,560 sf, 71.09% Impervious	, Inflow Depth > 3.50" for 25-YR event
Inflow =	0.3 cfs @ 12.01 hrs, Volume=	= 746 cf
Outflow =	0.2 cfs @ 12.06 hrs, Volume	= 727 cf, Atten= 43%, Lag= 3.0 min
Discarded =	0.1 cfs @ 12.05 hrs, Volume	= 670 cf
Primary =	0.1 cfs @ 12.05 hrs, Volume	= 58 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 157.03' @ 12.05 hrs Surf.Area= 93 sf Storage= 149 cf

Plug-Flow detention time= 30.1 min calculated for 727 cf (98% of inflow) Center-of-Mass det. time= 20.3 min (795.3 - 775.0 )

Volume	Invert	Avail.Sto	rage Storag	ge Description		
#1	153.00'	14		ch (Pyramidal)List	, , ,	
			372 c	f Overall x 40.0%	Voids	
Elevatio	n Su	rf.Area	Inc.Store	Cum.Store	Wet.Area	
(feet	t)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
153.0	0	93	0	0	93	
157.0	0	93	372	372	247	
Device	Routing	Invert	Outlet Devi	ces		
#1	Discarded	153.00'	10.000 in/h	r Exfiltration ove	r Wetted area Ph	nase-In= 0.01'
#2	Primary	156.95'				angular Weir .40 1.60 1.80 2.00

		Inside Out Painting
667710 Post	Type III 24-hr	25-YR Rainfall=5.82"
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions	S LLC	Page 29

Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

**Discarded OutFlow** Max=0.1 cfs @ 12.05 hrs HW=157.03' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=0.1 cfs @ 12.05 hrs HW=157.02' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.1 cfs @ 0.68 fps)

#### Summary for Pond P1B: Infiltration Trench

Inflow Area =	2,560 sf, 71.09% Impervious,	Inflow Depth = 0.27" for 25-YR event
Inflow =	0.1 cfs @ 12.05 hrs, Volume=	58 cf
Outflow =	0.0 cfs @ 12.31 hrs, Volume=	56 cf, Atten= 75%, Lag= 15.5 min
Discarded =	0.0 cfs @ 12.31 hrs, Volume=	56 cf
Primary =	0.0 cfs @ 5.00 hrs, Volume=	0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 152.15' @ 12.31 hrs Surf.Area= 93 sf Storage= 24 cf

Plug-Flow detention time= 10.5 min calculated for 56 cf (98% of inflow) Center-of-Mass det. time= 10.2 min (739.9 - 729.7)

Volume	Invert	Avail.Stor	rage Storage	Description		
#1	151.50'	14		(Pyramidal)Listed		
			072 01 0			
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
151.5	50	93	Ó	0	93	
155.5	50	93	372	372	247	
Device	Routing	Invert	Outlet Device	s		
#1	Discarded				letted area Phase-	
#2	Primary	155.40'	•		Crested Rectangul	
			2.50 3.00 3.5		0 1.00 1.20 1.40 1	.00 1.00 2.00
			Coef. (English	n) 2.54 2.61 2.61	2.60 2.66 2.70 2.7	7 2.89 2.88
			2.85 3.07 3.2	20 3.32		

**Discarded OutFlow** Max=0.0 cfs @ 12.31 hrs HW=152.15' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=151.50' (Free Discharge) ←2=Broad-Crested Rectangular Weir(Controls 0.0 cfs)

		Inside (	Out Painting
667710 Post	Type III 24-hr 2	25-YR Ra	infall=5.82"
Prepared by SFC Engineering		Printed	12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	ons LLC		Page 30

#### **Summary for Pond P2: Infiltration Trench**

Inflow Area = Inflow = Outflow = Discarded = Primary =	0.2 cfs @ 1 0.1 cfs @ 1 0.0 cfs @ 1	33.13% Impervious 12.04 hrs, Volume 12.17 hrs, Volume 12.15 hrs, Volume 12.17 hrs, Volume	= 51 = 51 = 47	> 1.42" for 25-YF 1 cf 2 cf, Atten= 42%, L 3 cf 9 cf			
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 159.95' @ 12.15 hrs Surf.Area= 110 sf Storage= 86 cf							
Center-of-Mass de	Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 12.2 min(835.4-823.1)						
Volume Inve		rage Storage De					
#1 158.00	)' 1:			midal)Listed below (	Recalc)		
		330 cf Over	all x 40.0% Vo	ds			
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area			
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)			
158.00	110	0	0	110			
161.00	110	330	330	236			
101.00	110	000	000	200			
Device Routing	Invert	Outlet Devices					
#1 Discarded	158.00						
#2 Primary	159.90'		breadth Broad	-Crested Rectangul	ar Weir		
,,,			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00				
		2.50 3.00 3.50					
Coef. (English) 2.54 2.61 2.61 2			2.60 2.66 2.70 2.7	7 2.89 2.88			
		2.85 3.07 3.20	3.32				
<b>Discarded OutElow</b> Max=0.0 cfs @ 12.15 hrs. $HW=150.05'$ (Free Discharge)							

**Discarded OutFlow** Max=0.0 cfs @ 12.15 hrs HW=159.95' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

**Primary OutFlow** Max=0.1 cfs @ 12.17 hrs HW=159.95' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.1 cfs @ 0.55 fps)

#### **Summary for Pond PP-1: Porous Pavement**

Inflow Area =	3,150 sf,	83.65% Impervious,	Inflow Depth > 1.31" for 25-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	343 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	332 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	332 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.08' @ 20.00 hrs Surf Area= 2,176 sf Storage= 11 cf Flood Elev= 163.65' Surf.Area= 2,176 sf Storage= 2,110 cf

Plug-Flow detention time= 7.3 min calculated for 331 cf (96% of inflow) Center-of-Mass det. time= 2.5 min (1,057.3 - 1,054.8)

#### 667710 Post

Prepared by SFC Engineering

Inside Out Painting Type III 24-hr 25-YR Rainfall=5.82" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 31

Volume	Invert	Ava	il.Storage	Storage Description				
#1	161.07'		2,110 cf	Custom Stage	Data (Pyramidal)Li	sted below (Recalc)		
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
161.0	)7	2,176	0.0	0	0	2,176		
161.5	57	2,176	40.0	435	435	2,269		
161.8	32	2,176	35.0	190	626	2,316		
162.8	32	2,176	35.0	762	1,387	2,503		
163.6	65	2,176	40.0	722	2,110	2,657		
Device	Routing	In	vert Out	et Devices				
#1	Discarded	161	1.07' <b>1.00</b>	0 in/hr Exfiltratio	on over Surface a	rea Phase-In= 0.01'		

Discarded OutFlow Max=0.1 cfs @ 20.00 hrs HW=161.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.1 cfs)

#### **Summary for Pond PP-2: Porous Pavement**

Inflow Area =	3,576 sf,	49.22% Impervious,	Inflow Depth > 0.56" for 25-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	166 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	160 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	160 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 160.93' @ 20.00 hrs Surf.Area= 1,550 sf Storage= 6 cf Flood Elev= 163.50' Surf.Area= 1,550 sf Storage= 1,503 cf

Plug-Flow detention time= 7.3 min calculated for 160 cf (96% of inflow) Center-of-Mass det. time= 2.5 min (1,077.9 - 1,075.4)

Volume	Invert	Ava	il.Storage	ge Storage Description				
#1	160.92'		1,503 cf	Custom Stage	Data (Pyramidal)	Listed below (Recalc)		
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)		
160.9	1	1,550	0.0	0	0	1,550		
161.4	2	1,550	40.0	310	310	1,629		
161.6	67	1,550	35.0	136	446	1,668		
162.6	67	1,550	35.0	543	988	1,826		
163.5	50	1,550	40.0	515	1,503	1,956		
Device #1	Routing Discarded			let Devices <b>)0 in/hr Exfiltrat</b>	ion over Surface	area Phase-In= 0.01'		

**Discarded OutFlow** Max=0.0 cfs @ 20.00 hrs HW=160.93' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

	Inside Out Painting
667710 Post	Type III 24-hr 25-YR Rainfall=5.82"
Prepared by SFC Engineering	Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	ons LLC Page 32

#### Summary for Pond RD: Roof Drain

[82] Warning: Early inflow requires earlier time span [57] Hint: Peaked at 161.50' (Flood elevation advised)

Inflow Area =	4,500 sf,100.00% Impervious,	Inflow Depth > 5.17" for 25-YR event
Inflow =	0.7 cfs @ 12.01 hrs, Volume=	1,937 cf
Outflow =	0.7 cfs @ 12.01 hrs, Volume=	1,937 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.7 cfs @ 12.01 hrs, Volume=	1,937 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.50' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	161.00'	<b>8.0" Round Culvert</b> L= 115.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 161.00' / 158.00' S= 0.0261 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.35 sf

**Primary OutFlow** Max=0.6 cfs @ 12.01 hrs HW=161.49' (Free Discharge) **1=Culvert** (Inlet Controls 0.6 cfs @ 2.38 fps)

#### Summary for Link 1L:

Inflow Area =	27,143 sf,	46.59% Impervious,	Inflow Depth > 0.13"	for 25-YR event
Inflow =	0.1 cfs @	12.17 hrs, Volume=	297 cf	
Primary =	0.1 cfs @	12.17 hrs, Volume=	297 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

<b>667710 Post</b> Prepared by SFC Engineering <u>HydroCAD® 10.10-5a_s/n 01053 © 2020 Hydro</u>	Inside Out Painting <i>Type III 24-hr 50-YR Rainfall=6.59"</i> Printed 12/23/2024 CAD Software Solutions LLC Page 33
Runoff by SCS TR-	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN ans method - Pond routing by Stor-Ind method
Subcatchment1.1P: Entrance In Drive	Runoff Area=4,316 sf 33.13% Impervious Runoff Depth>1.87" Flow Length=70' Tc=1.3 min CN=57 Runoff=0.2 cfs 671 cf
Subcatchment1.2P: Entrance Out Drive Flow Length=6	Runoff Area=2,560 sf 71.09% Impervious Runoff Depth>4.17" 5' Slope=0.0730 '/' Tc=0.3 min CN=81 Runoff=0.3 cfs 889 cf
Subcatchment1P:	Runoff Area=9,381 sf 6.93% Impervious Runoff Depth>0.54" Flow Length=40' Tc=2.4 min CN=39 Runoff=0.1 cfs 419 cf
Subcatchment2.1P:	Runoff Area=3,150 sf 83.65% Impervious Runoff Depth>1.55" Tc=692.0 min CN=88 Runoff=0.0 cfs 407 cf
Subcatchment2.2P:	Runoff Area=3,576 sf 49.22% Impervious Runoff Depth>0.72" Tc=692.0 min CN=67 Runoff=0.0 cfs 213 cf
Subcatchment2P:	Runoff Area=6,386 sf 66.47% Impervious Runoff Depth>3.85" Flow Length=85' Tc=0.6 min CN=78 Runoff=0.8 cfs 2,050 cf
Subcatchment3P: Roof Flow Length=40	Runoff Area=4,500 sf 100.00% Impervious Runoff Depth>5.87" Slope=0.0200 '/' Tc=0.6 min CN=98 Runoff=0.8 cfs 2,200 cf
Pond Bio: Bio Discarded=	Peak Elev=158.93' Storage=1,296 cf Inflow=1.6 cfs 4,250 cf =0.3 cfs 4,247 cf Primary=0.0 cfs 0 cf Outflow=0.3 cfs 4,247 cf
Pond P1A: Infiltration Trench Discarde	Peak Elev=156.99' Storage=148 cf Inflow=0.3 cfs 889 cf ed=0.1 cfs 748 cf Primary=0.0 cfs 43 cf Outflow=0.1 cfs 791 cf
Pond P1B: Infiltration Trench Disc	Peak Elev=151.94' Storage=16 cf Inflow=0.0 cfs 43 cf arded=0.0 cfs 43 cf Primary=0.0 cfs 0 cf Outflow=0.0 cfs 43 cf
Pond P2: Infiltration Trench Discarded	Peak Elev=159.99' Storage=87 cf Inflow=0.2 cfs 671 cf d=0.0 cfs 560 cf Primary=0.1 cfs 114 cf Outflow=0.2 cfs 674 cf
Pond PP-1: Porous Pavement	Peak Elev=161.08' Storage=13 cf Inflow=0.0 cfs 407 cf Outflow=0.0 cfs 394 cf
Pond PP-2: Porous Pavement	Peak Elev=160.93' Storage=8 cf Inflow=0.0 cfs 213 cf Outflow=0.0 cfs 205 cf
Pond RD: Roof Drain 8.0" Round	Peak Elev=161.54' Inflow=0.8 cfs 2,200 cf Culvert n=0.012 L=115.0' S=0.0261 '/' Outflow=0.8 cfs 2,200 cf
Link 1L:	Inflow=0.2 cfs 533 cf Primary=0.2 cfs 533 cf
Total Runoff Area = 33.869	sf Runoff Volume = 6,849 cf Average Runoff Depth = 2.4

Total Runoff Area = 33,869 sf Runoff Volume = 6,849 cf Average Runoff Depth = 2.43" 49.69% Pervious = 16,829 sf 50.31% Impervious = 17,040 sf

		Inside Out Painting
667710 Post	Type III 24-hr	50-YR Rainfall=6.59"
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions	s LLC	Page 34

#### Summary for Subcatchment 1.1P: Entrance In Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.2 cfs @ 12.03 hrs, Volume= 671 cf, Depth> 1.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=6.59"

A	rea (sf)	CN I	Description			
	1,430	98	Paved park	ing, HSG A	A Contraction of the second seco	
	560	30	Woods, Go	od, HSG A		
	2,326	39 :	>75% Gras	s cover, Go	bod, HSG A	
	4,316	57	Weighted A	verage		
	2,886	(	66.87% Pervious Area			
	1,430		33.13% Imj	pervious Ar	ea	
Tc	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
1.1	20	0.2000	0.29		Sheet Flow, Sheet Grass	
					Grass: Short n= 0.150 P2= 2.90"	
0.0	12	0.6700	5.73		Shallow Concentrated Flow, Shallow Grass	
					Short Grass Pasture Kv= 7.0 fps	
0.1	18	0.2000	3.13		Shallow Concentrated Flow, Shallow Grass	
					Short Grass Pasture Kv= 7.0 fps	
0.1	20	0.0200	2.87		Shallow Concentrated Flow, Shallow Pavement	
					Paved Kv= 20.3 fps	
1.3	70	Total				

#### Summary for Subcatchment 1.2P: Entrance Out Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.3 cfs @ 12.01 hrs, Volume= 889 cf, Depth> 4.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=6.59"

Area (sf)	CN	Description
1,820	98	Paved parking, HSG A
740	39	>75% Grass cover, Good, HSG A
2,560	81	Weighted Average
740 28.91% Pervious Area		28.91% Pervious Area
1,820		71.09% Impervious Area

CC7740	Deet				Inside Out Painting
667710		C Engine	oring		Type III 24-hr 50-YR Rainfall=6.59" Printed 12/23/2024
				20 HydroCA	D Software Solutions LLC Page 35
					<u></u>
	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	Chaot Flow, Chaot Devement
0.2	20	0.0730	1.59		Sheet Flow, Sheet Pavement Smooth surfaces n= 0.011 P2= 2.90"
0.1	45	0.0730	5.48		Shallow Concentrated Flow, Shallow Pavement Paved Kv= 20.3 fps
0.3	65	Total			
			<b>C</b>		ar Cubaatabmant 4D
			Su	mmary to	or Subcatchment 1P:
[49] Hint	: Tc<2dt	may requ	ire smaller	⁻ dt	
Runoff	=	0.1 cf	īs @ 12.1	1 hrs, Volu	ume= 419 cf, Depth> 0.54"
		R-20 meth YR Rainf		SCS, Weigh	nted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
A	rea (sf)	CN D	escription		
	4,006			od, HSG A	
	4,725				ood, HSG A
	650			ing, HSG A	
	9,381 8,731		/eighted A	verage vious Area	
	650	-		ervious Are	
		Ŭ			-
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.3	20	0.2500	0.15		Sheet Flow, Sheet Woods
0.1	20	0.3300	4.02		Woods: Light underbrush n= 0.400 P2= 2.90" Shallow Concentrated Flow, Shallow Grass Short Grass Pasture Kv= 7.0 fps

2.4 40 Total

### Summary for Subcatchment 2.1P:

[73] Warning: Peak may fall outside time span

Runoff = 0.0 cfs @ 20.00 hrs, Volume= 407 cf, Depth> 1.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=6.59"

Area	a (sf)	CN	Description
2	2,635	98	Unconnected pavement, HSG A
	515	39	>75% Grass cover, Good, HSG A
3	3,150	88	Weighted Average
	515		16.35% Pervious Area
2	2,635		83.65% Impervious Area
2	2,635		100.00% Unconnected

	d by SFC			0 HydroCAI	<i>Type III 24-I</i> D Software Solutions LLC	Inside Out Painting nr 50-YR Rainfall=6.59" Printed 12/23/2024 Page 36
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
692.0					Direct Entry, Porous Pavemen	t
			Sun	nmary fo	r Subcatchment 2.2P:	
[73] War	ning: Peal	k may fal	ll outside t	me span		

Runoff = 0.0 cfs @ 20.00 hrs, Volume= 213 cf, Depth> 0.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=6.59"

Α	rea (sf)	CN	Description					
	1,550	98	Unconnecte	ed pavemer	nt, HSG A			
	400	30	Woods, Go	od, HSG A	N Contraction of the second			
	1,416	39	>75% Gras	s cover, Go	ood, HSG A			
*	210	98	Retaining V	Vall, HSG A	Α			
	3,576	67	Weighted A	verage				
	1,816		50.78% Pervious Area					
	1,760		49.22% Im	pervious Ar	rea			
	1,550		88.07% Un	connected				
Tc	Length	Slop		Capacity	Description			
(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)				
692.0					Direct Entry, Porous Pavement			
					-			

#### Summary for Subcatchment 2P:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.8 cfs @ 12.01 hrs, Volume= 2,050 cf, Depth> 3.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50-YR Rainfall=6.59"

Area (sf)	CN	Description
2,141	39	>75% Grass cover, Good, HSG A
4,245	98	Paved parking, HSG A
6,386	78	Weighted Average
2,141		33.53% Pervious Area
4,245		66.47% Impervious Area

	d by SF	C Engine -5a_s/n 01		20 HydroCA	Inside Out Painting <i>Type III 24-hr 50-YR Rainfall=6.59"</i> Printed 12/23/2024 D Software Solutions LLC Page 37	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
0.3 0.3	20 65	0.0350 0.0400	1.19 4.06		Sheet Flow, Sheet Pavement Smooth surfaces n= 0.011 P2= 2.90" Shallow Concentrated Flow, Shallow Pavement Paved Kv= 20.3 fps	
0.6	85	Total				
			Sum	marv for	Subcatchment 3P: Roof	
	<b>T</b> 0 1			•		
[49] Hint	: Ic<2dt	may requ	ire smalle	r dt		
Runoff	=	0.8 ct	fs@ 12.0	1 hrs, Volu	ume= 2,200 cf, Depth> 5.87"	
			nod, UH=S fall=6.59"	SCS, Weigh	nted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs	
A	rea (sf)	CN D	escription			
	4,500		oofs, HSC			
	4,500	1	00.00% In	npervious A	lirea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
0.6	40	0.0200	1.09		<b>Sheet Flow, Roof Sheet</b> Smooth surfaces n= 0.011 P2= 2.90"	
	Summary for Pond Bio: Bio					
				arlier time s ^{&gt;} rimary dev	span /ice # 1 OUTLET by 0.93'	

Inflow Area =	10,886 sf, 80.33% Impervious	, Inflow Depth > 4.68" for 50-YR event
Inflow =	1.6 cfs @ 12.01 hrs, Volume:	= 4,250 cf
Outflow =	0.3 cfs @ 12.45 hrs, Volume:	= 4,247 cf, Atten= 84%, Lag= 26.7 min
Discarded =	0.3 cfs @ 12.45 hrs, Volume	= 4,247 cf
Primary =	0.0 cfs @ 5.00 hrs, Volume	= 0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 158.93' @ 12.45 hrs Surf.Area= 878 sf Storage= 1,296 cf Flood Elev= 160.00' Surf.Area= 1,000 sf Storage= 1,831 cf

Plug-Flow detention time= 37.0 min calculated for 4,247 cf (100% of inflow) Center-of-Mass det. time= 36.7 min (789.4 - 752.7)

Volume	Invert	Avail.Storage	Storage Description
#1	156.00'	1,831 cf	Custom Stage Data (Pyramidal)Listed below (Recalc)

007740 Deet						Dut Painting	
667710 Post	Enginopring			туре п	24-hr 50-YR Ra	12/23/2024	
Prepared by SFC HydroCAD® 10.10-5			oCAD Software	Solutions LLC	Finited	Page 38	
		<u>2020 Hyun</u>	OCAD Soltware			Fage 30	
Elevation S	Surf.Area Vo	ids	Inc.Store	Cum.Store	Wet.Area		
(feet)	(sq-ft) (	(%) (c	cubic-feet)	(cubic-feet)	(sq-ft)		
156.00		0.0	0	0	650		
157.75	650 3	5.0	398	398	828		
159.50	1,000 10	0.0	1,433	1,831	1,232		
Dovice Routing	Invert	Outlet De	ovices				
Device Routing #1 Discarded				an aver Wetted are			
#1 Discardec #2 Primary	156.00			on over Wetted are dth Broad-Crested			
#Z Filliary	159.00		•	0.60 0.80 1.00 1	•		
		2.50 3.0		0.00 0.00 1.00 1	.20 1.40 1.00 1.	00 2.00	
				2.61 2.61 2.60 2.6	6 2.70 2.77 2.89	2.88	
			7 3.20 3.32		0 2.10 2.11 2.00	2.00	
Discarded OutFlo				93' (Free Discharg	e)		
[™] 1=Exfiltration(	Exfiltration Co	ontrols 0.3 c	cfs)				
Primary OutFlow	Max=0.0 ofc.	a 5 00 bra		(Free Discharge)			
2=Broad-Creste							
	ou neotungui			/			
Summary for Pond P1A: Infiltration Trench							
Inflow Area =	2,560 sf	71.09% lm	pervious. Inflo	ow Depth > 4.17"	for 50-YR event		
Inflow =	0.3 cfs @			889 cf			
Outflow =	0.1 cfs @				n= 70%, Lag= 13	.7 min	
Discarded =	0.1 cfs @			748 cf			
Primary =	0.0 cfs @			43 cf			

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 156.99' @ 12.23 hrs Surf.Area= 93 sf Storage= 148 cf

Plug-Flow detention time= 60.5 min calculated for 789 cf (89% of inflow) Center-of-Mass det. time= 25.6 min ( 796.4 - 770.8 )

Volume	Invert	Avail.Stor	rage Storage [	Description		
#1	153.00'	14	•	<b>Pyramidal)</b> Listed /erall_x 40.0% Voi	( )	
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
153.0	00	93	0	0	93	
157.0	00	93	372	372	247	
Device	Routing	Invert	Outlet Devices	i		
#1 #2	Discarded 153.00' 1 Primary 156.95' 2 H 2 C		<b>2.0' long x 2.0</b> Head (feet) 0.1 2.50 3.00 3.5	<b>D' breadth Broad</b> 20 0.40 0.60 0.8 0 ) 2.54 2.61 2.61	<b>Vetted area</b> Phase- <b>Crested Rectangula</b> 0 1.00 1.20 1.40 1 2.60 2.66 2.70 2.7	<b>ar Weir</b> .60 1.80 2.00

667710 Post	Type III 24-br	Inside Out Painting 50-YR Rainfall=6.59"
	i ype iii 2 <del>4</del> -iii	50- ITA INAII II AII - 0.59
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	s LLC	Page 39

**Discarded OutFlow** Max=0.1 cfs @ 12.23 hrs HW=156.99' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=0.0 cfs @ 12.23 hrs HW=156.99' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.0 cfs @ 0.52 fps)

#### **Summary for Pond P1B: Infiltration Trench**

Inflow Area =	2,560 sf, 71.09% Impervious	, Inflow Depth = 0.20" for 50-YR event
Inflow =	0.0 cfs @ 12.23 hrs, Volume	= 43 cf
Outflow =	0.0 cfs @ 12.37 hrs, Volume	= 43 cf, Atten= 45%, Lag= 8.1 min
Discarded =	0.0 cfs @ 12.37 hrs, Volume	= 43 cf
Primary =	0.0 cfs @ 5.00 hrs, Volume	= 0 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 151.94' @ 12.37 hrs Surf.Area= 93 sf Storage= 16 cf

Plug-Flow detention time= 6.4 min calculated for 43 cf (100% of inflow) Center-of-Mass det. time= 6.6 min (741.6 - 735.1)

Volume	Invert	Avail.Sto	rage Storage	Description		
#1	151.50'	14		(Pyramidal)Listed		
			372 cf O	verall x 40.0% Vo	bids	
Elevatio	on Su	ırf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
151.5	50	93	0	0	93	
155.5	50	93	372	372	247	
Device	Routing	Invert	Outlet Devices	5		
#1	Discarded	151.50'	10.000 in/hr E	Exfiltration over V	Netted area Phas	e-In= 0.01'
#2	Primary	155.40'			I-Crested Rectang	
			Head (feet) 0	.20 0.40 0.60 0.8	80 1.00 1.20 1.40	1.60 1.80 2.00
			2.50 3.00 3.5			
					2.60 2.66 2.70 2	2.77 2.89 2.88
			2.85 3.07 3.2	20 3.32		
Discarded OutFlow Max=0.0 cfs @ 12.37 hrs HW=151.93' (Free Discharge)						

**1=Exfiltration** (Exfiltration Controls 0.0 cfs)

Primary OutFlow Max=0.0 cfs @ 5.00 hrs HW=151.50' (Free Discharge) —2=Broad-Crested Rectangular Weir( Controls 0.0 cfs)

		Inside Out Painting
667710 Post	Type III 24-hr	50-YR Rainfall=6.59"
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	ons LLC	Page 40

#### **Summary for Pond P2: Infiltration Trench**

Inflow Area = Inflow = Outflow = Discarded = Primary =	= 0.2 cfs @ = 0.2 cfs @ = 0.0 cfs @	33.13% Impervio 12.03 hrs, Volum 12.08 hrs, Volum 12.10 hrs, Volum 12.08 hrs, Volum	ie= ie= ie=	671 cf	for 50-YR event n= 27%, Lag= 2.6 min
	Stor-Ind method, Tir 159.99' @ 12.10 hrs				
	etention time= (not o ass det. time= 11.6			ow)	
Volume	Invert Avail.S	torage Storage E	Description		
#1	158.00'	132 cf Custom	Stage Data (P	vramidal)Lis	ted below (Recalc)
			erall x 40.0%		( )
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.	Area
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(s	sq-ft)
158.00	110	0	0		110
161.00	110	330	330		236
	-				
Device Ro	uting Inve	t Outlet Devices			
	scarded 158.00	)' 10.000 in/hr E	xfiltration ove	er Wetted are	ea Phase-In= 0.01'
	mary 159.90				Rectangular Weir
		<b>U</b>			.20 1.40 1.60 1.80 2.00
		2.50 3.00 3.50			
		Coef. (English)	2.54 2.61 2	.61 2.60 2.6	6 2.70 2.77 2.89 2.88
		2.85 3.07 3.20			
Discarded OutFlow Max=0.0 cfs @ 12.10 hrs HW=159.99' (Free Discharge)					

**Discarded OutFlow** Max=0.0 cfs @ 12.10 hrs HW=159.99' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

**Primary OutFlow** Max=0.1 cfs @ 12.08 hrs HW=159.99' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.1 cfs @ 0.75 fps)

#### **Summary for Pond PP-1: Porous Pavement**

Inflow Area =	3,150 sf,	83.65% Impervious,	Inflow Depth > 1.55" for 50-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	407 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	394 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	394 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.08' @ 20.00 hrs Surf Area= 2,176 sf Storage= 13 cf Flood Elev= 163.65' Surf.Area= 2,176 sf Storage= 2,110 cf

Plug-Flow detention time= 7.3 min calculated for 393 cf (96% of inflow) Center-of-Mass det. time= 2.5 min (1,054.6 - 1,052.1)

#### 667710 Post

Prepared by SFC Engineering

Inside Out Painting Type III 24-hr 50-YR Rainfall=6.59" Printed 12/23/2024 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 41

Volume	Invert	Ava	il.Storage	Storage Descrip	otion		
#1	161.07'		2,110 cf	Custom Stage	Data (Pyramidal)Li	sted below (Recalc)	
Elevation (feet		ırf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
161.0	7	2,176	0.0	0	0	2,176	
161.5	7	2,176	40.0	435	435	2,269	
161.8	2	2,176	35.0	190	626	2,316	
162.8	2	2,176	35.0	762	1,387	2,503	
163.6	5	2,176	40.0	722	2,110	2,657	
Device	Routing	In	vert Out	et Devices			
#1	Discarded	161	1.07' <b>1.00</b>	0 in/hr Exfiltration	on over Surface a	rea Phase-In= 0.01'	

Discarded OutFlow Max=0.1 cfs @ 20.00 hrs HW=161.08' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.1 cfs)

#### **Summary for Pond PP-2: Porous Pavement**

Inflow Area =	3,576 sf,	49.22% Impervious,	Inflow Depth > 0.72" for 50-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	213 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	205 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	205 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 160.93' @ 20.00 hrs Surf.Area= 1,550 sf Storage= 8 cf Flood Elev= 163.50' Surf.Area= 1,550 sf Storage= 1,503 cf

Plug-Flow detention time= 7.3 min calculated for 205 cf (96% of inflow) Center-of-Mass det. time= 2.5 min (1,076.5 - 1,074.1)

Volume	Invert	Ava	il.Storage	Storage Descri	ption		
#1	160.92'		1,503 cf	Custom Stage	Data (Pyramidal)	Listed below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
160.9	/	1,550	0.0	0	0	1,550	
161.4	2	1,550	40.0	310	310	1,629	
161.6	7	1,550	35.0	136	446	1,668	
162.6	7	1,550	35.0	543	988	1,826	
163.5	0	1,550	40.0	515	1,503	1,956	
Device	Routing			let Devices			
#1	Discarded	160	).92' <b>1.0</b>	00 in/hr Exfiltrat	ion over Surface	area Phase-In= 0.01'	

**Discarded OutFlow** Max=0.0 cfs @ 20.00 hrs HW=160.93' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

	Inside Out Painting
667710 Post	Type III 24-hr 50-YR Rainfall=6.59"
Prepared by SFC Engineering	Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	ons LLC Page 42

#### Summary for Pond RD: Roof Drain

[82] Warning: Early inflow requires earlier time span [57] Hint: Peaked at 161.54' (Flood elevation advised)

Inflow Area =	4,500 sf,100.00% Impervious,	Inflow Depth > 5.87" for 50-YR event
Inflow =	0.8 cfs @ 12.01 hrs, Volume=	2,200 cf
Outflow =	0.8 cfs @ 12.01 hrs, Volume=	2,200 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.8 cfs @ 12.01 hrs, Volume=	2,200 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.54' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	161.00'	<b>8.0" Round Culvert</b> L= 115.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 161.00' / 158.00' S= 0.0261 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.35 sf

**Primary OutFlow** Max=0.7 cfs @ 12.01 hrs HW=161.53' (Free Discharge) **1=Culvert** (Inlet Controls 0.7 cfs @ 2.48 fps)

#### Summary for Link 1L:

Inflow Area =		27,143 sf,	46.59% Impervious,	Inflow Depth > 0.24"	for 50-YR event
Inflow	=	0.2 cfs @	12.09 hrs, Volume=	533 cf	
Primary	=	0.2 cfs @	12.09 hrs, Volume=	533 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

<b>667710 Post</b> Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 HydroC	Inside Out Painting <i>Type III 24-hr 100-YR Rainfall=7.43"</i> Printed 12/23/2024 CAD Software Solutions LLC Page 43
Runoff by SCS TR-2	20.00 hrs, dt=0.05 hrs, 301 points 20 method, UH=SCS, Weighted-CN ns method - Pond routing by Stor-Ind method
Subcatchment1.1P: Entrance In Drive	Runoff Area=4,316 sf 33.13% Impervious Runoff Depth>2.39" Flow Length=70' Tc=1.3 min CN=57 Runoff=0.3 cfs 859 cf
Subcatchment1.2P: Entrance Out Drive Flow Length=65'	Runoff Area=2,560 sf 71.09% Impervious Runoff Depth>4.91" Slope=0.0730 '/' Tc=0.3 min CN=81 Runoff=0.4 cfs 1,047 cf
Subcatchment1P:	Runoff Area=9,381 sf 6.93% Impervious Runoff Depth>0.81" Flow Length=40' Tc=2.4 min CN=39 Runoff=0.1 cfs 631 cf
Subcatchment2.1P:	Runoff Area=3,150 sf 83.65% Impervious Runoff Depth>1.82" Tc=692.0 min CN=88 Runoff=0.0 cfs 478 cf
Subcatchment2.2P:	Runoff Area=3,576 sf 49.22% Impervious Runoff Depth>0.90" Tc=692.0 min CN=67 Runoff=0.0 cfs 268 cf
Subcatchment2P:	Runoff Area=6,386 sf 66.47% Impervious Runoff Depth>4.58" Flow Length=85' Tc=0.6 min CN=78 Runoff=0.9 cfs 2,435 cf
	Runoff Area=4,500 sf   100.00% Impervious   Runoff Depth>6.63" Slope=0.0200 '/'   Tc=0.6 min   CN=98   Runoff=0.9 cfs  2,486 cf
Pond Bio: Bio Discarded=0.3	Peak Elev=159.05' Storage=1,407 cf Inflow=1.8 cfs 4,921 cf 3 cfs 4,698 cf Primary=0.3 cfs 224 cf Outflow=0.6 cfs 4,922 cf
Pond P1A: Infiltration Trench Discarded=0	Peak Elev=157.16' Storage=149 cf Inflow=0.4 cfs 1,047 cf 0.1 cfs 833 cf Primary=0.5 cfs 326 cf Outflow=0.6 cfs 1,159 cf
Pond P1B: Infiltration Trench Discarded	Peak Elev=155.60' Storage=149 cf Inflow=0.5 cfs 326 cf =0.1 cfs 228 cf Primary=0.5 cfs 160 cf Outflow=0.5 cfs 387 cf
Pond P2: Infiltration Trench Discarded	Peak Elev=160.04' Storage=90 cf Inflow=0.3 cfs 859 cf =0.0 cfs 655 cf Primary=0.3 cfs 197 cf Outflow=0.3 cfs 852 cf
Pond PP-1: Porous Pavement	Peak Elev=161.09' Storage=15 cf Inflow=0.0 cfs 478 cf Outflow=0.0 cfs 463 cf
Pond PP-2: Porous Pavement	Peak Elev=160.94' Storage=10 cf Inflow=0.0 cfs 268 cf Outflow=0.0 cfs 258 cf
Pond RD: Roof Drain 8.0" Round C	Peak Elev=161.59' Inflow=0.9 cfs 2,486 cf Culvert n=0.012 L=115.0' S=0.0261 '/' Outflow=0.9 cfs 2,486 cf
Link 1L:	Inflow=0.8 cfs 1,212 cf Primary=0.8 cfs 1,212 cf
Total Runoff Area = 33.869 s	of Runoff Volume = 8,205 cf Average Runoff Depth = 2.91

Total Runoff Area = 33,869 sf Runoff Volume = 8,205 cf Average Runoff Depth = 2.91" 49.69% Pervious = 16,829 sf 50.31% Impervious = 17,040 sf

 Inside Out Painting

 667710 Post
 Type III 24-hr
 100-YR Rainfall=7.43"

 Prepared by SFC Engineering
 Printed
 12/23/2024

 HydroCAD® 10.10-5a
 s/n 01053
 © 2020 HydroCAD Software Solutions LLC
 Page 44

### Summary for Subcatchment 1.1P: Entrance In Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.3 cfs @ 12.03 hrs, Volume= 859 cf, Depth> 2.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.43"

A	rea (sf)	CN	Description		
	1,430	98	Paved park	ing, HSG A	N
	560	30	Woods, Go	od, HSG A	
	2,326	39	>75% Gras	s cover, Go	bod, HSG A
	4,316	57	Weighted A	verage	
	2,886		66.87% Pe	rvious Area	
	1,430		33.13% Imp	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.1	20	0.2000	0.29		Sheet Flow, Sheet Grass
					Grass: Short n= 0.150 P2= 2.90"
0.0	12	0.6700	5.73		Shallow Concentrated Flow, Shallow Grass
					Short Grass Pasture Kv= 7.0 fps
0.1	18	0.2000	3.13		Shallow Concentrated Flow, Shallow Grass
					Short Grass Pasture Kv= 7.0 fps
0.1	20	0.0200	2.87		Shallow Concentrated Flow, Shallow Pavement
					Paved Kv= 20.3 fps
1.3	70	Total			

#### Summary for Subcatchment 1.2P: Entrance Out Drive

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.4 cfs @ 12.01 hrs, Volume= 1,047 cf, Depth> 4.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.43"

Area (sf)	CN	Description			
1,820	98	Paved parking, HSG A			
740	39	>75% Grass cover, Good, HSG A			
2,560	81	Weighted Average			
740		28.91% Pervious Area			
1,820		71.09% Impervious Area			

	d by SF	C Engine 5a_s/n 01		20 HydroCA	Inside Out Painting <i>Type III 24-hr 100-YR Rainfall=7.43"</i> Printed 12/23/2024 D Software Solutions LLC Page 45
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
0.2	20 45	0.0730 0.0730	1.59 5.48		Sheet Flow, Sheet Pavement Smooth surfaces n= 0.011 P2= 2.90" Shallow Concentrated Flow, Shallow Pavement
0.1	45	0.0730	5.40		Paved Kv= 20.3 fps
0.3	65	Total			
[49] Hint	: Tc<2dt	may requ	<b>Su</b> ire smaller	-	or Subcatchment 1P:
Runoff	=	0.1 cf	^r s @ 12.0	)8 hrs, Volu	ume= 631 cf, Depth> 0.81"
			nod, UH=S nfall=7.43'		nted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs
ΑΑ	rea (sf)	CN D	escription		
	4,006			od, HSG A	
	4,725 650			s cover, Go ing, HSG A	bod, HSG A
	9,381		Veighted A		
	8,731			rvious Area	I Contraction of the second
	650	6	.93% Impe	ervious Are	а
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.3	20	0.2500	0.15		Sheet Flow, Sheet Woods
0.1	20	0.3300	4.02		Woods: Light underbrush n= 0.400 P2= 2.90" Shallow Concentrated Flow, Shallow Grass Short Grass Pasture Kv= 7.0 fps

2.4 40 Total

## Summary for Subcatchment 2.1P:

[73] Warning: Peak may fall outside time span

Runoff = 0.0 cfs @ 20.00 hrs, Volume= 478 cf, Depth> 1.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.43"

Area (sf)	CN	Description				
2,635	98	Unconnected pavement, HSG A				
515	39	>75% Grass cover, Good, HSG A				
3,150	88	Weighted Average				
515		16.35% Pervious Area				
2,635		83.65% Impervious Area				
2,635		100.00% Unconnected				

•	d by SFC	•	•	D Software Soluti		Inside Out Painting 100-YR Rainfall=7.43" Printed 12/23/2024 Page 46		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
692.0					Direct Entry, I	Porous Pavement		
Summary for Subcatchment 2.2P:								
[73] Warning: Peak may fall outside time span								
Runoff	=	0.0 cf	s@ 20.0	00 hrs, Volu	ume=	268 cf, Depth> (	).90"	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.43"

A	rea (sf)	CN	Description		
	1,550	98	Unconnecte	ed pavemer	nt, HSG A
	400	30	Woods, Go	od, HSG A	
	1,416	39	>75% Gras	s cover, Go	ood, HSG A
*	210	98	Retaining V	Vall, HSG A	<i>A</i>
	3,576	67	Weighted A	verage	
	1,816		50.78% Per	rvious Area	1
	1,760		49.22% Imp	pervious Ar	ea
	1,550		88.07% Un	connected	
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft	) (ft/sec)	(cfs)	
692.0					Direct Entry, Porous Pavement
					-

#### Summary for Subcatchment 2P:

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.9 cfs @ 12.01 hrs, Volume= 2,435 cf, Depth> 4.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.43"

Area (sf)	CN	Description
2,141	39	>75% Grass cover, Good, HSG A
4,245	98	Paved parking, HSG A
6,386	78	Weighted Average
2,141		33.53% Pervious Area
4,245		66.47% Impervious Area

	d by SF			20 HydroCAI	Inside Out Painting <i>Type III 24-hr 100-YR Rainfall=7.43"</i> Printed 12/23/2024 D Software Solutions LLC Page 47		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
0.3	20	0.0350	1.19		Sheet Flow, Sheet Pavement Smooth surfaces n= 0.011 P2= 2.90"		
0.3	65	0.0400	4.06		Shallow Concentrated Flow, Shallow Pavement Paved Kv= 20.3 fps		
0.6	85	Total					
			Sum	mary for	Subcatchment 3P: Roof		
[49] Hint	: Tc<2dt	may requ	iire smaller	⁻ dt			
Runoff	=	0.9 c	fs @ 12.0	1 hrs, Volu	ume= 2,486 cf, Depth> 6.63"		
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-YR Rainfall=7.43"						
Α	rea (sf)	CN D	Description				
	4,500	98 F	Roofs, HSG	βA			

_		4,500	98 F	Roofs, HSC	β A					
		4,500	1	100.00% Impervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
	0.6	40	0.0200	1.09		Sheet Flow, Roof Sheet Smooth surfaces n= 0.011 P2= 2.90"				

#### Summary for Pond Bio: Bio

[82] Warning: Early inflow requires earlier time span [79] Warning: Submerged Pond RD Primary device # 1 OUTLET by 1.05'

Inflow Area =	10,886 sf, 80.33% Impervious, Inflow Depth > 5.42" f	or 100-YR event
Inflow =	1.8 cfs @ 12.01 hrs, Volume= 4,921 cf	
Outflow =	0.6 cfs @ 12.27 hrs, Volume= 4,922 cf, Atten=	= 67%, Lag= 15.7 min
Discarded =	0.3 cfs @ 12.27 hrs, Volume= 4,698 cf	-
Primary =	0.3 cfs @ 12.27 hrs, Volume= 224 cf	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 159.05' @ 12.27 hrs Surf.Area= 904 sf Storage= 1,407 cf Flood Elev= 160.00' Surf.Area= 1,000 sf Storage= 1,831 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 37.2 min (788.3 - 751.1)

Volume	Invert	Avail.Storage	Storage Description
#1	156.00'	1,831 cf	Custom Stage Data (Pyramidal)Listed below (Recalc)

	d by SF	C Enginee -5a_s/n 010		020 HydroCAD Softw		III 24-hr 100-YF	ide Out Painting R <i>Rainfall=7.43"</i> hted 12/23/2024 Page 48
Elevatio		Surf.Area			Cum.Store	Wet.Area	
(feet	/	(sq-ft)	(%)	) (cubic-feet)	(cubic-feet)	(sq-ft)	
156.00	0	650	0.0	) 0	0	650	
157.7	5	650	35.0	) 398	398	828	
159.50	0	1,000	100.0	) 1,433	1,831	1,232	
Device         Routing         Invert         Outlet Devices           #1         Discarded         156.00'         10.000 in/hr Exfiltration over Wetted area         Phase-In= 0.01'           #2         Primary         159.00'         10.0' long x 2.0' breadth Broad-Crested Rectangular Weir           Head (feet)         0.20         0.40         0.60         0.80         1.00         1.40         1.60         1.80         2.0'           2.50         3.00         3.50         Coef. (English)         2.54         2.61         2.60         2.66         2.70         2.77         2.89         2.88						r Weir 0 1.80 2.00	
Discarded OutFlow Max=0.3 cfs @ 12.27 hrs HW=159.05' (Free Discharge) [●] —1=Exfiltration (Exfiltration Controls 0.3 cfs)							
	Primary OutFlow Max=0.3 cfs @ 12.27 hrs HW=159.05' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.3 cfs @ 0.57 fps)						
	Summary for Pond P1A: Infiltration Trench						

[93] Warning: Storage range exceeded by 0.16'[88] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =	2,560 sf, 71.0	09% Impervious,	Inflow Depth > 4.91" for 100-YR event
Inflow =	0.4 cfs @ 12.0	01 hrs, Volume=	1,047 cf
Outflow =	0.6 cfs @ 12.0	02 hrs, Volume=	1,159 cf, Atten= 0%, Lag= 0.8 min
Discarded =	0.1 cfs @ 12.0	00 hrs, Volume=	833 cf
Primary =	0.5 cfs @ 12.0	02 hrs, Volume=	326 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 157.16' @ 12.00 hrs Surf.Area= 93 sf Storage= 149 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 11.3 min (778.2 - 766.9 )

Volume	Invert	Avail.Sto	rage Storage	Description		
#1	153.00'	14		( <b>Pyramidal)</b> Liste verall x 40.0% V		
Elevatio (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
153.0	0	93	0	0	93	
157.0	0	93	372	372	247	
<u>Device</u> #1 #2	Routing Discarded Primary	Invert 153.00' 156.95'	2.0' long x 2	Exfiltration over	Wetted area Pha d-Crested Rectar	ngular Weir
			Head (leet)	.20 0.40 0.60 0	.80 1.00 1.20 1.4	40 1.60 1.80 2.00

 Inside Out Painting

 667710 Post

 Prepared by SFC Engineering
 Type III 24-hr 100-YR Rainfall=7.43"

 Printed 12/23/2024
 Printed 12/23/2024

 HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC
 Page 49

2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32

**Discarded OutFlow** Max=0.1 cfs @ 12.00 hrs HW=157.16' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=0.5 cfs @ 12.02 hrs HW=157.15' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.5 cfs @ 1.15 fps)

#### **Summary for Pond P1B: Infiltration Trench**

[93] Warning: Storage range exceeded by 0.10'

Inflow Area =	2,560 sf, 71.09% Im	pervious, Inflow Dep	pth = 1.53" for 100-YR event
Inflow =	0.5 cfs @ 12.02 hrs,	Volume=	326 cf
Outflow =	0.5 cfs @ 12.11 hrs,	Volume=	387 cf, Atten= 2%, Lag= 5.4 min
Discarded =	0.1 cfs @ 12.10 hrs,	Volume=	228 cf
Primary =	0.5 cfs @ 12.11 hrs,	Volume=	160 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 155.60' @ 12.10 hrs Surf.Area= 93 sf Storage= 149 cf

Plug-Flow detention time= 10.9 min calculated for 326 cf (100% of inflow) Center-of-Mass det. time= 19.6 min (745.9 - 726.3)

Volume	Invert	Avail.Sto	rage Storage I	Description			
#1	151.50'	14		9 cf <b>Trench (Pyramidal)</b> Listed below (Recalc) 372 cf Overall x 40.0% Voids			
			572 0 00		105		
Elevatio	on Su	rf.Area	Inc.Store	Cum.Store	Wet.Area		
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)		
151.5	-	93	0	0	93		
155.5	50	93	372	372	247		
Device #1 #2	Routing Discarded Primary	Invert 151.50' 155.40'	<b>2.0' long x 2.0</b> Head (feet) 0. 2.50 3.00 3.5	xfiltration over W 0' breadth Broad 20 0.40 0.60 0.8 0 ) 2.54 2.61 2.61	Vetted area Phase -Crested Rectangu 50 1.00 1.20 1.40 2.60 2.66 2.70 2.	llar Weir 1.60 1.80 2.00	
			2.85 3.07 3.2	0 3.32			

**Discarded OutFlow** Max=0.1 cfs @ 12.10 hrs HW=155.60' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.1 cfs)

Primary OutFlow Max=0.4 cfs @ 12.11 hrs HW=155.59' (Free Discharge) 2=Broad-Crested Rectangular Weir (Weir Controls 0.4 cfs @ 1.10 fps)

		Inside Out Painting
667710 Post	Type III 24-hr	100-YR Rainfall=7.43"
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solution	ons LLC	Page 50

### **Summary for Pond P2: Infiltration Trench**

Inflow Area = Inflow = Outflow = Discarded = Primary =	0.3 cfs @ 0.3 cfs @ 0.0 cfs @	33.13% Impervious 12.03 hrs, Volume 12.06 hrs, Volume 12.06 hrs, Volume 12.06 hrs, Volume	= 859 c = 852 c = 655 c	f,  Atten= 0%,  Lag= 1.6 min f			
	tor-Ind method, Tim 60.04' @ 12.06 hrs			/ 3			
	tention time= 15.8 r ss det. time= 12.7 r			/)			
Volume	Invert Avail.St	orage Storage De	escription				
#1	158.00'		a <b>ge Data (Pyrami</b> rall x 40.0% Voids	dal)Listed below (Recalc)			
Elevation	Surf.Area	Inc.Store	Cum.Store	Wet.Area			
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)			
158.00	110	0	0	110			
161.00	110	330	330	236			
Device Rou	iting Invert	Outlet Devices					
	carded 158.00			ted area Phase-In= 0.01'			
#2 Prin	nary 159.90	0		ested Rectangular Weir			
			0.40 0.60 0.80	1.00 1.20 1.40 1.60 1.80 2.0	00		
		2.50 3.00 3.50					
		Coef. (English) 2 2.85 3.07 3.20		60 2.66 2.70 2.77 2.89 2.88			
<b>Discarded OutFlow</b> Max=0.0 cfs @ 12.06 hrs HW=160.03' (Free Discharge)							

**1=Exfiltration** (Exfiltration Controls 0.0 cfs)

**Primary OutFlow** Max=0.3 cfs @ 12.06 hrs HW=160.04' (Free Discharge) **2=Broad-Crested Rectangular Weir** (Weir Controls 0.3 cfs @ 0.93 fps)

#### **Summary for Pond PP-1: Porous Pavement**

Inflow Area =	3,150 sf,	83.65% Impervious,	Inflow Depth > 1.82" for 100-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	478 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	463 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	463 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.09' @ 20.00 hrs Surf.Area= 2,176 sf Storage= 15 cf Flood Elev= 163.65' Surf.Area= 2,176 sf Storage= 2,110 cf

Plug-Flow detention time= 7.3 min calculated for 463 cf (97% of inflow) Center-of-Mass det. time= 2.5 min (1,052.0 - 1,049.5)

#### 667710 Post

Inside Out Painting Type III 24-hr 100-YR Rainfall=7.43" Printed 12/23/2024 Prepared by SFC Engineering HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC Page 51

Volume	Invert	Ava	il.Storage	Storage Descrip	otion		
#1	161.07'		2,110 cf	Custom Stage	Data (Pyramidal)Li	sted below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
161.0		2,176	0.0	0	0	2,176	
161.5	57	2,176	40.0	435	435	2,269	
161.8	32	2,176	35.0	190	626	2,316	
162.8	32	2,176	35.0	762	1,387	2,503	
163.6	65	2,176	40.0	722	2,110	2,657	
Device	Routing	In	vert Outl	et Devices			
#1	Discarded	161	.07' <b>1.00</b>	0 in/hr Exfiltratio	on over Surface a	rea Phase-In= 0.01'	

Discarded OutFlow Max=0.1 cfs @ 20.00 hrs HW=161.09' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.1 cfs)

#### **Summary for Pond PP-2: Porous Pavement**

Inflow Area =	3,576 sf,	49.22% Impervious,	Inflow Depth > 0.90" for 100-YR event
Inflow =	0.0 cfs @	20.00 hrs, Volume=	268 cf
Outflow =	0.0 cfs @	20.00 hrs, Volume=	258 cf, Atten= 1%, Lag= 0.0 min
Discarded =	0.0 cfs @	20.00 hrs, Volume=	258 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 160.94' @ 20.00 hrs Surf.Area= 1,550 sf Storage= 10 cf Flood Elev= 163.50' Surf.Area= 1,550 sf Storage= 1,503 cf

Plug-Flow detention time= 7.3 min calculated for 257 cf (96% of inflow) Center-of-Mass det. time= 2.5 min (1,075.1 - 1,072.6)

Volume	Invert	Ava	il.Storage	Storage Descri	ption		
#1	160.92'	I	1,503 cf	Custom Stage	Data (Pyramidal)	Listed below (Recalc)	
Elevatio (fee		urf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
160.9	1	1,550	0.0	0	0	1,550	
161.4	12	1,550	40.0	310	310	1,629	
161.6	67	1,550	35.0	136	446	1,668	
162.6	67	1,550	35.0	543	988	1,826	
163.5	50	1,550	40.0	515	1,503	1,956	
Device #1	Routing Discarded			et Devices 00 in/hr Exfiltrati	ion over Surface a	area Phase-In= 0.01'	

**Discarded OutFlow** Max=0.0 cfs @ 20.00 hrs HW=160.94' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.0 cfs)

		Inside Out Painting
667710 Post	Type III 24-hr	100-YR Rainfall=7.43"
Prepared by SFC Engineering		Printed 12/23/2024
HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutio	ns LLC	Page 52

#### Summary for Pond RD: Roof Drain

[82] Warning: Early inflow requires earlier time span [57] Hint: Peaked at 161.59' (Flood elevation advised)

Inflow Area =	4,500 sf,100.00% Impervious,	Inflow Depth > 6.63" for 100-YR event
Inflow =	0.9 cfs @ 12.01 hrs, Volume=	2,486 cf
Outflow =	0.9 cfs @ 12.01 hrs, Volume=	2,486 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.9 cfs @ 12.01 hrs, Volume=	2,486 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 161.59' @ 12.01 hrs

Device	Routing	Invert	Outlet Devices
-	Primary	161.00'	<b>8.0" Round Culvert</b> L= 115.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 161.00' / 158.00' S= 0.0261 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.35 sf

**Primary OutFlow** Max=0.8 cfs @ 12.01 hrs HW=161.58' (Free Discharge) **1=Culvert** (Inlet Controls 0.8 cfs @ 2.59 fps)

#### Summary for Link 1L:

Inflow Are	a =	27,143 sf,	46.59% Impervious,	Inflow Depth > 0.54"	for 100-YR event
Inflow	=	0.8 cfs @	12.10 hrs, Volume=	1,212 cf	
Primary	=	0.8 cfs @	12.10 hrs, Volume=	1,212 cf, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

## **APPENDIX E**

## SUPPORTING HYDROLOGIC DATA

Precipitation Frequency Data Server



NOAA Atlas 14, Volume 10, Version 3 Location name: Hudson, New Hampshire, USA* Latitude: 42.7522°, Longitude: -71.4281° Elevation: 163 ft** * source: ESRI Maps ** source: USGS



#### POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

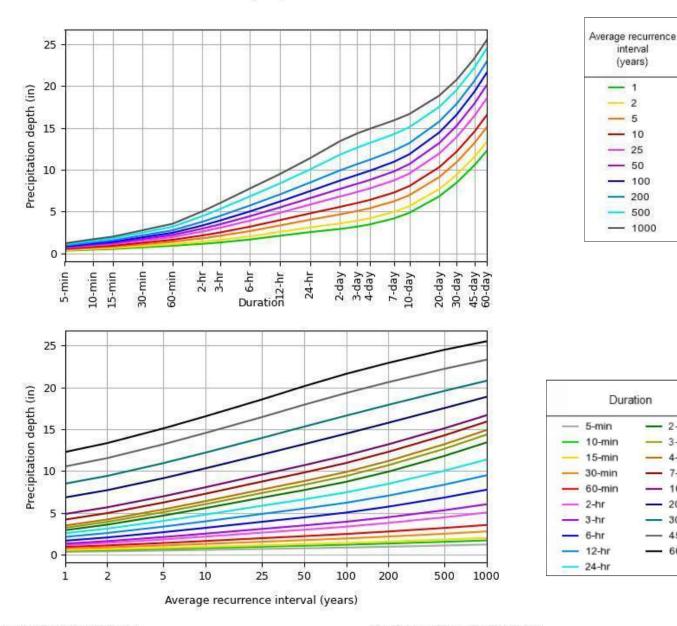
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

#### PF tabular

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Dunation		Average recurrence interval (years)								
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	<b>0.312</b> (0.251-0.386)	<b>0.371</b> (0.297-0.459)	<b>0.467</b> (0.373-0.580)	<b>0.547</b> (0.434-0.683)	<b>0.657</b> (0.502-0.857)	<b>0.739</b> (0.553-0.987)	<b>0.826</b> (0.597-1.14)	<b>0.925</b> (0.628-1.31)	<b>1.07</b> (0.695-1.57)	<b>1.19</b> (0.753-1.78)
10-min	<b>0.442</b> (0.355-0.547)	<b>0.525</b> (0.421-0.650)	<b>0.661</b> (0.528-0.821)	<b>0.774</b> (0.614-0.967)	<b>0.930</b> (0.712-1.21)	<b>1.05</b> (0.783-1.40)	<b>1.17</b> (0.846-1.62)	<b>1.31</b> (0.890-1.85)	<b>1.52</b> (0.986-2.22)	<b>1.68</b> (1.07-2.52)
15-min	<b>0.520</b> (0.418-0.643)	<b>0.618</b> (0.496-0.765)	<b>0.778</b> (0.622-0.967)	<b>0.911</b> (0.723-1.14)	<b>1.09</b> (0.837-1.43)	<b>1.23</b> (0.921-1.64)	<b>1.38</b> (0.995-1.91)	<b>1.54</b> (1.05-2.18)	<b>1.78</b> (1.16-2.61)	<b>1.98</b> (1.25-2.96)
30-min	<b>0.713</b> (0.573-0.882)	<b>0.851</b> (0.682-1.05)	<b>1.08</b> (0.859-1.34)	<b>1.26</b> (1.00-1.58)	<b>1.52</b> (1.16-1.98)	<b>1.71</b> (1.28-2.28)	<b>1.91</b> (1.38-2.65)	<b>2.14</b> (1.46-3.03)	<b>2.48</b> (1.61-3.63)	<b>2.75</b> (1.74-4.11)
60-min	<b>0.907</b> (0.728-1.12)	<b>1.08</b> (0.869-1.34)	<b>1.37</b> (1.10-1.70)	<b>1.61</b> (1.28-2.02)	<b>1.94</b> (1.49-2.54)	<b>2.19</b> (1.64-2.92)	<b>2.45</b> (1.77-3.39)	<b>2.75</b> (1.87-3.88)	<b>3.18</b> (2.06-4.65)	<b>3.53</b> (2.23-5.26)
2-hr	<b>1.13</b> (0.915-1.39)	<b>1.38</b> (1.12-1.70)	<b>1.80</b> (1.44-2.22)	<b>2.14</b> (1.71-2.65)	<b>2.60</b> (2.01-3.39)	<b>2.95</b> (2.22-3.94)	<b>3.33</b> (2.43-4.62)	<b>3.77</b> (2.57-5.31)	<b>4.45</b> (2.90-6.47)	<b>5.02</b> (3.18-7.45)
3-hr	<b>1.30</b> (1.05-1.59)	<b>1.59</b> (1.29-1.96)	<b>2.08</b> (1.68-2.56)	<b>2.49</b> (2.00-3.08)	<b>3.05</b> (2.36-3.97)	<b>3.47</b> (2.62-4.61)	<b>3.92</b> (2.87-5.43)	<b>4.46</b> (3.04-6.25)	<b>5.29</b> (3.45-7.68)	<b>6.00</b> (3.82-8.88)
6-hr	<b>1.65</b> (1.34-2.00)	<b>2.03</b> (1.66-2.48)	<b>2.66</b> (2.16-3.26)	<b>3.18</b> (2.57-3.92)	<b>3.90</b> (3.04-5.05)	<b>4.43</b> (3.38-5.87)	<b>5.01</b> (3.70-6.93)	<b>5.72</b> (3.92-7.97)	<b>6.81</b> (4.46-9.82)	<b>7.75</b> (4.94-11.4)
12-hr	<b>2.10</b> (1.72-2.54)	<b>2.56</b> (2.11-3.11)	<b>3.33</b> (2.72-4.05)	<b>3.96</b> (3.22-4.85)	<b>4.84</b> (3.79-6.21)	<b>5.48</b> (4.20-7.21)	<b>6.19</b> (4.59-8.48)	<b>7.04</b> (4.84-9.75)	<b>8.35</b> (5.49-12.0)	<b>9.48</b> (6.06-13.8)
24-hr	<b>2.53</b> (2.10-3.05)	<b>3.09</b> (2.56-3.72)	<b>4.01</b> (3.30-4.84)	<b>4.77</b> (3.90-5.79)	<b>5.82</b> (4.58-7.42)	<b>6.59</b> (5.07-8.61)	<b>7.43</b> (5.53-10.1)	<b>8.45</b> (5.84-11.6)	<b>10.0</b> (6.61-14.3)	<b>11.4</b> (7.29-16.5)
2-day	<b>2.90</b> (2.42-3.47)	<b>3.57</b> (2.97-4.27)	<b>4.65</b> (3.85-5.58)	<b>5.55</b> (4.56-6.70)	<b>6.78</b> (5.38-8.61)	<b>7.70</b> (5.96-10.0)	<b>8.69</b> (6.51-11.8)	<b>9.91</b> (6.87-13.6)	<b>11.8</b> (7.80-16.7)	<b>13.4</b> (8.63-19.3)
3-day	<b>3.19</b> (2.67-3.80)	<b>3.90</b> (3.26-4.65)	<b>5.06</b> (4.21-6.05)	<b>6.02</b> (4.97-7.24)	<b>7.34</b> (5.83-9.28)	<b>8.32</b> (6.46-10.8)	<b>9.38</b> (7.04-12.7)	<b>10.7</b> (7.42-14.5)	<b>12.6</b> (8.39-17.8)	<b>14.3</b> (9.25-20.6)
4-day	<b>3.45</b> (2.90-4.10)	<b>4.19</b> (3.51-4.98)	<b>5.39</b> (4.49-6.43)	<b>6.38</b> (5.28-7.66)	<b>7.76</b> (6.17-9.76)	<b>8.77</b> (6.82-11.3)	<b>9.87</b> (7.41-13.2)	<b>11.2</b> (7.80-15.2)	<b>13.2</b> (8.76-18.5)	<b>14.9</b> (9.62-21.4)
7-day	<b>4.17</b> (3.51-4.92)	<b>4.94</b> (4.16-5.85)	<b>6.21</b> (5.21-7.37)	<b>7.26</b> (6.04-8.67)	<b>8.71</b> (6.96-10.9)	<b>9.79</b> (7.63-12.5)	<b>10.9</b> (8.21-14.5)	<b>12.3</b> (8.59-16.6)	<b>14.3</b> (9.50-19.9)	<b>15.9</b> (10.3-22.7)
10-day	<b>4.84</b> (4.09-5.70)	<b>5.64</b> (4.76-6.65)	<b>6.95</b> (5.85-8.22)	<b>8.04</b> (6.72-9.57)	<b>9.54</b> (7.64-11.8)	<b>10.7</b> (8.32-13.5)	<b>11.8</b> (8.88-15.6)	<b>13.2</b> (9.25-17.7)	<b>15.1</b> (10.1-21.0)	<b>16.7</b> (10.8-23.7)
20-day	<b>6.82</b> (5.81-7.98)	<b>7.69</b> (6.54-9.01)	<b>9.12</b> (7.72-10.7)	<b>10.3</b> (8.66-12.2)	<b>11.9</b> (9.60-14.6)	<b>13.2</b> (10.3-16.5)	<b>14.5</b> (10.8-18.7)	<b>15.8</b> (11.1-21.0)	<b>17.5</b> (11.8-24.2)	<b>18.9</b> (12.3-26.7)
30-day	<b>8.46</b> (7.24-9.87)	<b>9.40</b> (8.02-11.0)	<b>10.9</b> (9.29-12.8)	<b>12.2</b> (10.3-14.4)	<b>13.9</b> (11.2-17.0)	<b>15.3</b> (12.0-19.0)	<b>16.6</b> (12.4-21.2)	<b>17.9</b> (12.7-23.8)	<b>19.6</b> (13.2-26.9)	<b>20.8</b> (13.5-29.3)
45-day	<b>10.5</b> (9.04-12.2)	<b>11.5</b> (9.88-13.4)	<b>13.2</b> (11.2-15.4)	<b>14.5</b> (12.3-17.1)	<b>16.4</b> (13.3-19.9)	<b>17.9</b> (14.0-22.1)	<b>19.3</b> (14.4-24.5)	<b>20.6</b> (14.7-27.3)	<b>22.2</b> (15.0-30.4)	<b>23.3</b> (15.2-32.7)
60-day	<b>12.3</b> (10.6-14.2)	<b>13.3</b> (11.5-15.5)	<b>15.1</b> (12.9-17.5)	<b>16.5</b> (14.0-19.3)	<b>18.5</b> (15.0-22.4)	<b>20.1</b> (15.8-24.7)	<b>21.6</b> (16.1-27.3)	<b>22.9</b> (16.3-30.2)	<b>24.5</b> (16.6-33.5)	<b>25.5</b> (16.7-35.7)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

#### **PF graphical**







NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Mon Jul 29 12:02:03 2024

Back to Top

Maps & aerials

Small scale terrain

2-day

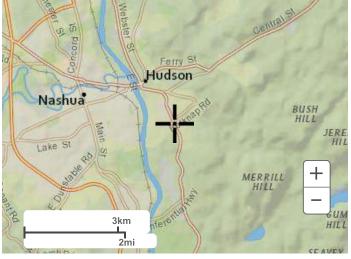
3-day

4-day

7-day

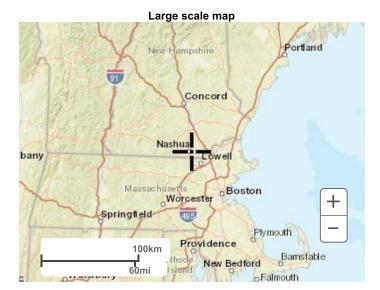
10-day

20-day


30-day

45-day

- 60-day


Precipitation Frequency Data Server

## Attachment "E"



Large scale terrain





Large scale aerial

Precipitation Frequency Data Server

## Attachment "E"



Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: HDSC.Questions@noaa.gov

**Disclaimer** 

## **APPENDIX F**

## BMP WORKSHEETS



## Groundwater Recharge Volume (GRV) Calculation

0.35	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.40	inches	Rd = weighted groundwater recharge depth	
0.14	ac-in	GRV = AI * Rd	
508	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

## Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

<u>vvq</u> 1307.04).	
Bioretention (Bio) = 1,590 CF	
Infitration Trench (P1) = 273 CF	
Infitration Trench (P2) = 84 CF	
Porous Pavement (PP-1) = 128 CF	
Porous Pavement (PP-2) = 34 CF	
Total GRV=2,109 CF	
	NHDES Alteration of Terrain

## INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name:

onmental

Services

#### Infiltration Trench P1

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

Yes		Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
0.06		A = Area draining to the practice	
0.04	ас	A ₁ = Impervious area draining to the practice	
0.71	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.69	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
0.04	ac-in	WQV= 1" x Rv x A	
147	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
37	cf	25% x WQV (check calc for sediment forebay volume)	
Grass Fil	ter Strip	Method of pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>&gt;</u> 25%WQV
280	cf	V = Volume ¹ (attach a stage-storage table)	<u>&gt;</u> WQV
186	sf	A _{SA} = Surface area of the bottom of the pond	
10.00	iph	Ksat _{DESIGN} = Design infiltration rate ²	
0.9	hours	I _{DRAIN} = Drain time = V / (A _{SA} * I _{DESIGN} )	< 72-hrs
151.50	feet	E _{BTM} = Elevation of the bottom of the basin	
151.00	feet	$E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
151.00	feet	$E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
0.50	feet	D _{SHWT} = Separation from SHWT	<u>&gt;</u> * ³
0.5	feet	D _{ROCK} = Separation from bedrock	<u>&gt;</u> * ³
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	_ > 24"
4.00	ft	D _T = Depth of trench, if trench proposed	4 - 10 ft
Yes	Yes/No	If a trench or underground system is proposed, has observation well been provide	ed? <b>←yes</b>
Ye	es	_If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements. ⁴	← yes
	Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
	:1	If a basin is proposed, pond side slopes.	<u>&gt;</u> 3:1
156.92	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
156.99	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
157.00	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES		10 peak elevation <a href="https://www.elevation.com"></a> Elevation of the top of the trench? ⁵	← yes
YES		If a basin is proposed, 50-year peak elevation $\leq$ Elevation of berm?	← yes
1 Maluna			

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

**Designer's Notes:** 0.5' of separation to SHWT in test pit #3 is to bottom of observed excavation (84"). Other test pits on site show no SHWT in the area down to 90".

NHDES Alteration of Terrain

# 667710 Post Ty Prepared by {enter your company name here} HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024

### Stage-Area-Storage for Pond P1A: Infiltration Trench

Elevation	Surface	Wetted	Storage
(feet)	(sq-ft)	(sq-ft)	(cubic-feet)
153.00	90	90	0
153.10	90	94	4
153.20	90	98	7
153.30	90	101	11
153.40	90	105	14
153.50	90	109	18
153.60	90	113	22
153.70	90	117	25
153.80	90	120	29
153.90	90	124	32
154.00	90	128	36
154.10	90	132	40
154.20	90	136	43
154.30	90	139	47
154.40	90	143	50
154.50	90	147	54
154.60 154.70	90 90	151 155	58 61
154.80	90 90	155	65
154.80	90 90	162	68
155.00	90 90	166	72
155.10	90	170	72
155.20	90	173	70
155.30	90	173	83
155.40	90	181	86
155.50	90	185	90
155.60	90	189	94
155.70	90	192	97
155.80	90	196	101
155.90	90	200	104
156.00	90	204	108
156.10	90	208	112
156.20	90	211	115
156.30	90	215	119
156.40	90	219	122
156.50	90	223	126
156.60	90	227	130
156.70	90	230	133
156.80	90	234	137
156.90	90	238	140
157.00	90	242	144

# 667710 Post Ty Prepared by {enter your company name here} HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024

### Stage-Area-Storage for Pond P1B: Infiltration Trench

Elevation	Surface	Wetted	Storage
(feet)	(sq-ft)	(sq-ft)	(cubic-feet)
151.50	90	90	
151.60	90	94	4
151.70	90	98	7
151.80	90	101	11
151.90	90	105	14
152.00	90	109	18
152.10	90	113	22
152.20	90	117	25
152.30	90	120	29
152.40	90	124	32
152.50	90	128	36
152.60	90	132	40
152.70	90	136	43
152.80	90	139	47
152.90	90	143	50
153.00	90	147	54
153.10 153.20	90 90	151 155	58 61
153.20	90 90	155	65
153.40	90 90	162	68
153.50	90 90	166	72
153.60	90 90	170	72
153.70	90	173	70
153.80	90	173	83
153.90	90	181	86
154.00	90	185	90
154.10	90	189	94
154.20	90	192	97
154.30	90	196	101
154.40	90	200	104
154.50	90	204	108
154.60	90	208	112
154.70	90	211	115
154.80	90	215	119
154.90	90	219	122
155.00	90	223	126
155.10	90	227	130
155.20	90	230	133
155.30	90	234	137
155.40	90	238	140
155.50	90	242	144

## INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name:

#### Infiltration Trench P2

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable.

Yes		Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	← yes
0.10		A = Area draining to the practice	
0.03	ас	A ₁ = Impervious area draining to the practice	
0.33	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.35	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x l)	
0.03	ac-in	WQV= 1" x Rv x A	
125	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
31		25% x WQV (check calc for sediment forebay volume)	
Grass Fi	ter Strip	Method of pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>&gt;</u> 25%WQV
128	_	V = Volume ¹ (attach a stage-storage table)	<u>&gt;</u> WQV
110	sf	A _{SA} = Surface area of the bottom of the pond	
10.00	iph	Ksat _{DESIGN} = Design infiltration rate ²	
1.4	hours	$I_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	< 72-hrs
158.00	feet	$E_{BTM}$ = Elevation of the bottom of the basin	
155.50	feet	$E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
155.50	feet	$E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
2.50	feet	D _{SHWT} = Separation from SHWT	<u>&gt;</u> * ³
2.5	feet		<u>&gt;</u> * ³
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	_ > 24"
4.00	ft	D _T = Depth of trench, if trench proposed	4 - 10 ft
Yes	Yes/No	If a trench or underground system is proposed, has observation well been provid	ed? <b>←yes</b>
Y	es	If a trench is proposed, does materialmeet Env-Wq 1508.06(k)(2) requirements. ⁴	← yes
	Yes/No	If a basin is proposed, Is the perimeter curvilinear, and basin floor flat?	← yes
	:1	If a basin is proposed, pond side slopes.	<u>&gt;</u> 3:1
159.10	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
159.99	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
161.00	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)	
YES		10 peak elevation <a href="https://www.elevation.com"></a> Elevation of the top of the trench? ⁵	← yes
YES		If a basin is proposed, 50-year peak elevation $\leq$ Elevation of berm?	←yes
1 Maluma			

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

**Designer's Notes:** 2.5' of separation to SHWT in test pit #1 is to bottom of observed excavation (90").



Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024

#### Stage-Area-Storage for Pond P2: Infiltration Trench

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation	Surface	Wetted	Storage
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
158.10 $110$ $114$ $4$ $158.20$ $110$ $118$ $9$ $158.30$ $110$ $123$ $13$ $158.40$ $110$ $127$ $18$ $158.50$ $110$ $131$ $22$ $158.60$ $110$ $135$ $26$ $158.70$ $110$ $139$ $31$ $158.80$ $110$ $144$ $35$ $158.90$ $110$ $148$ $40$ $159.00$ $110$ $152$ $44$ $159.00$ $110$ $156$ $48$ $159.20$ $110$ $160$ $53$ $159.30$ $110$ $165$ $57$ $159.40$ $110$ $169$ $62$ $159.50$ $110$ $173$ $66$ $159.60$ $110$ $177$ $70$ $159.70$ $110$ $181$ $75$ $159.80$ $110$ $190$ $84$ $160.10$ $110$ $194$ $88$ $160.10$ $110$ $202$ $97$ $160.30$ $110$ $215$ $110$ $160.60$ $110$ $219$ $114$ $160.70$ $110$ $219$ $114$ $160.70$ $110$ $227$ $123$ $160.90$ $110$ $232$ $128$				
158.20 $110$ $118$ $9$ $158.30$ $110$ $123$ $13$ $158.40$ $110$ $127$ $18$ $158.50$ $110$ $131$ $22$ $158.60$ $110$ $135$ $26$ $158.70$ $110$ $139$ $31$ $158.80$ $110$ $144$ $35$ $158.90$ $110$ $144$ $35$ $158.90$ $110$ $148$ $40$ $159.00$ $110$ $152$ $44$ $159.10$ $110$ $156$ $48$ $159.20$ $110$ $160$ $53$ $159.30$ $110$ $165$ $57$ $159.40$ $110$ $169$ $62$ $159.50$ $110$ $173$ $66$ $159.60$ $110$ $177$ $70$ $159.70$ $110$ $181$ $75$ $159.80$ $110$ $190$ $84$ $160.10$ $110$ $194$ $88$ $160.10$ $110$ $202$ $97$ $160.30$ $110$ $215$ $110$ $160.40$ $110$ $211$ $106$ $160.50$ $110$ $219$ $114$ $160.70$ $110$ $223$ $119$ $160.80$ $110$ $232$ $128$				
158.30 $110$ $123$ $13$ $158.40$ $110$ $127$ $18$ $158.50$ $110$ $131$ $22$ $158.60$ $110$ $135$ $26$ $158.70$ $110$ $139$ $31$ $158.80$ $110$ $144$ $35$ $158.90$ $110$ $144$ $35$ $158.90$ $110$ $148$ $40$ $159.00$ $110$ $152$ $44$ $159.10$ $110$ $156$ $48$ $159.20$ $110$ $160$ $53$ $159.30$ $110$ $165$ $57$ $159.40$ $110$ $169$ $62$ $159.50$ $110$ $173$ $66$ $159.60$ $110$ $177$ $70$ $159.70$ $110$ $181$ $75$ $159.80$ $110$ $186$ $79$ $159.90$ $110$ $190$ $84$ $160.10$ $110$ $202$ $97$ $160.30$ $110$ $211$ $106$ $160.50$ $110$ $215$ $110$ $160.60$ $110$ $219$ $114$ $160.70$ $110$ $227$ $123$ $160.90$ $110$ $232$ $128$				
158.40 $110$ $127$ $18$ $158.50$ $110$ $131$ $22$ $158.60$ $110$ $135$ $26$ $158.70$ $110$ $139$ $31$ $158.80$ $110$ $144$ $35$ $158.90$ $110$ $144$ $35$ $158.90$ $110$ $144$ $35$ $159.90$ $110$ $152$ $44$ $159.00$ $110$ $156$ $48$ $159.20$ $110$ $160$ $53$ $159.30$ $110$ $165$ $57$ $159.40$ $110$ $169$ $62$ $159.50$ $110$ $173$ $66$ $159.60$ $110$ $177$ $70$ $159.70$ $110$ $181$ $75$ $159.80$ $110$ $190$ $84$ $160.00$ $110$ $194$ $88$ $160.10$ $110$ $202$ $97$ $160.30$ $110$ $215$ $110$ $160.40$ $110$ $215$ $110$ $160.60$ $110$ $219$ $114$ $160.70$ $110$ $227$ $123$ $160.90$ $110$ $232$ $128$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	159.80	110	186	79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	159.90	110	190	84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160.00	110	194	88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160.10	110	198	92
160.40110211106160.50110215110160.60110219114160.70110223119160.80110227123160.90110232128	160.20	110	202	97
160.50110215110160.60110219114160.70110223119160.80110227123160.90110232128	160.30	110	206	101
160.60110219114160.70110223119160.80110227123160.90110232128	160.40	110	211	106
160.70110223119160.80110227123160.90110232128	160.50	110	215	110
160.80110227123160.90110232128	160.60	110	219	114
160.90 110 232 128	160.70	110	223	119
	160.80		227	123
161.00 110 <b>236 132</b>	160.90			
	161.00	110	236	132



## FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

#### Type/Node Name:

**Bioretention Basin** 

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

Yes		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	7(a).
0.25	ac	A = Area draining to the practice	
0.20	ac	A _I = Impervious area draining to the practice	
0.80	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.77	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
0.19	ac-in	WQV= 1" x Rv x A	
701	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
175	cf	25% x WQV (check calc for sediment forebay volume)	
526	cf	75% x WQV (check calc for surface sand filter volume)	
Grass Fi	lter Strip	Method of Pretreatment? (not required for clean or roof runoff)	
	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>&gt;</u> 25%WQV
Calculate ti	me to drain	if system IS NOT underdrained:	
650	sf	A _{SA} = Surface area of the practice	
10.00	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
1.3	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u>&lt;</u> 72-hrs
Calculate ti	me to drain	if system IS underdrained:	
	ft	E _{wQV} = Elevation of WQV (attach stage-storage table)	
	cfs	$Q_{WQV}$ = Discharge at the E _{WQV} (attach stage-discharge table)	
-			
-	hours	$T_{DRAIN}$ = Drain time = 2WQV/Q _{WQV}	<u>&lt;</u> 72-hrs
- 156.00			<u>&lt;</u> 72-hrs
		$T_{DRAIN}$ = Drain time = 2WQV/Q _{WQV}	<u>&lt;</u> 72-hrs
	feet feet	$T_{DRAIN}$ = Drain time = 2WQV/Q _{WQV} E _{FC} = Elevation of the bottom of the filter course material ²	
156.00	feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable$	it)
156.00 155.00	feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p$	it)
156.00 155.00 155.00	feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p)$	it) pit)
156.00 155.00 155.00 156.00	feet feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course$	it) pit) <b>≥ 1'</b>
156.00 155.00 155.00 156.00 1.00	feet feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2$ $E_{UD} = Invert elevation of the underdrain (UD), if applicable$ $E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p)$ $E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test)$ $D_{FC to UD} = Depth to UD from the bottom of the filter course$ $D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course$	it) pit) ≥1' ≥1'
156.00 155.00 155.00 156.00 1.00 1.00	feet feet feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2$ $E_{UD} = Invert elevation of the underdrain (UD), if applicable$ $E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p)$ $E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test)$ $D_{FC to UD} = Depth to UD from the bottom of the filter course$ $D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course$ $D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course$	it) pit) ≥1' ≥1'
156.00 155.00 155.00 156.00 1.00 1.00 158.93	feet feet feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)$	it) pit) ≥1' ≥1'
156.00 155.00 155.00 156.00 1.00 1.00 158.93 159.50 YES If a surface	feet feet feet feet feet feet ft ft	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)Elevation of the top of the practice50 peak elevation < Elevation of the top of the practiceor underground sand filter is proposed:$	it) pit) ≥ 1' ≥ 1' ≥ 1' <b>← yes</b>
156.00 155.00 155.00 156.00 1.00 1.00 158.93 159.50 YES	feet feet feet feet feet feet ft ft	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice Drainage Area check.$	it) pit) ≥1' ≥1' ≥1' ≥1'
156.00 155.00 155.00 156.00 1.00 1.00 158.93 159.50 YES If a surface	feet feet feet feet feet feet ft ft sand filter	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)Elevation of the top of the practice50 peak elevation < Elevation of the top of the practiceor underground sand filter is proposed:$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
156.00 155.00 155.00 156.00 1.00 1.00 158.93 159.50 YES If a surface	feet feet feet feet feet ft ft sand filter ac	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice Drainage Area check.$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac
156.00 155.00 155.00 156.00 1.00 1.00 158.93 159.50 YES If a surface YES	feet feet feet feet feet feet ft ft sand filter ac cf inches	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice Or underground sand filter is proposed: Drainage Area check. V = Volume of storage3 (attach a stage-storage table) D_{FC} = Filter course thickness$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
156.00 155.00 155.00 156.00 1.00 1.00 158.93 159.50 YES If a surface	feet feet feet feet feet feet ft ft sand filter ac cf inches	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to Bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis)Elevation of the top of the practice50 peak elevation < Elevation of the top of the practiceor underground sand filter is proposed:Drainage Area check.V = Volume of storage3 (attach a stage-storage table)$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

		nt "E"	
f a bioretention are	ea is proposed:		
YES ac	Drainage Area no larger than 5 ac?	← yes	
1,358 cf	V = Volume of storage ³ (attach a stage-storage table)	<u>&gt;</u> WQV	
inches 18.0	D _{FC} = Filter course thickness	18", or 24" if within GPA	
Sheet	8 Note what sheet in the plan set contains the filter course specification		
3.0 :1	Pond side slopes	<u>&gt; 3</u> :1	
Sheet	8 Note what sheet in the plan set contains the planting plans and surface cover		
f porous pavement	is proposed:		
	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)		
acres	A _{SA} = Surface area of the pervious pavement		
:1	Ratio of the contributing area to the pervious surface area	≤ 5:1	
inches	D _{FC} = Filter course thickness	12", or 18" if within GPA	
		mod. 304.1 (see	
Sheet	Note what sheet in the plan set contains the filter course spec.	spec)	

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019

#### 667710 Post

Prepared by {enter your company name here} HydroCAD® 10.10-5a s/n 01053 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-YR Rainfall=3.09" Printed 12/23/2024

#### Stage-Area-Storage for Pond Bio: Bio

<b>-1</b>	Quinte e e		01
Elevation (feet)	Surface (sq-ft)	Wetted (sq-ft)	Storage (cubic-feet)
156.00	650	<u> </u>	0
156.10	650	660	23
156.20	650	670	45
156.30	650	681	68
156.40	650	691	91
156.50	650	701	114
156.60	650	711	136
156.70	650	721	159
156.80	650	732	182
156.90	650	742	205
157.00	650	752	227
157.10	650	762	250
157.20	650	772	273
157.30	650	783	296
157.40	650	793	319
157.50	650	803	341
157.60	650	813	364
157.70	650	823	387
157.80	659	839	431
157.90	677	860	498
158.00	695	881	566
158.10	714	902	637
158.20	733	924	709
158.30	752	946	783
158.40 158.50	771 791	968 991	859 938
158.60	811	1,013	1,018
158.70	831	1,037	1,100
158.80	851	1,060	1,184
158.90	872	1,084	1,104
159.00	892	1,108	1,358
159.10	913	1,132	1,448
159.20	935	1,156	1,541
159.30	956	1,181	1,635
159.40	978	1,206	1,732
159.50	1,000	1,232	1,831
159.60	1,000	1,232	1,831
159.70	1,000	1,232	1,831
159.80	1,000	1,232	1,831
159.90	1,000	1,232	1,831
160.00	1,000	1,232	1,831



## FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

#### Type/Node Name:

#### **Porous Pavement PP1**

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

Yes		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.07	′(a).
0.07 a	ас	A = Area draining to the practice	
0.06 a	ас	A ₁ = Impervious area draining to the practice	
0.84 0	decimal	I = Percent impervious area draining to the practice, in decimal form	
0.80 ı	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
0.06 a	ac-in	WQV= 1" x Rv x A	
211 0	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
53 0	cf	25% x WQV (check calc for sediment forebay volume)	
158 c	cf	75% x WQV (check calc for surface sand filter volume)	
Not Req	Jurired	Method of Pretreatment? (not required for clean or roof runoff)	
C	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>&gt;</u> 25%WQV
Calculate tim	ne to drain	if system IS NOT underdrained:	
2,176 s	sf	A _{SA} = Surface area of the practice	
10.00 i	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
		If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
١	Yes/No	(Use the calculations below)	
0.1 ľ	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u>&lt;</u> 72-hrs
Calculate tim	ne to drain	if system IS underdrained:	
f	ft	$E_{WQV}$ = Elevation of WQV (attach stage-storage table)	
C	cfs	$Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table)	
- ł	hours	$T_{DRAIN}$ = Drain time = 2WQV/Q _{WQV}	<u>&lt;</u> 72-hrs
161.82 f	feet	$E_{FC}$ = Elevation of the bottom of the filter course material ²	
f	feet	$E_{UD}$ = Invert elevation of the underdrain (UD), if applicable	
155.00 f	feet	$E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test pi	t)
155.00 f	feet	$E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test	pit)
161.82 f	feet	$D_{FC to UD}$ = Depth to UD from the bottom of the filter course	<u>&gt;</u> 1'
6.82 f	feet	$D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course	<u>≥</u> 1'
6.82 f	feet	$D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course	<u>&gt;</u> 1'
161.08 f	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
163.65 f	ft	Elevation of the top of the practice	
YES		50 peak elevation $\leq$ Elevation of the top of the practice	← yes
	sand filter	or underground sand filter is proposed:	
	ас	Drainage Area check.	< 10 ac
(	cf	V = Volume of storage ³ (attach a stage-storage table)	<u>&gt;</u> 75%WQV
i	inches	D _{FC} = Filter course thickness	18", or 24" if within GPA
		Note what sheet in the plan set contains the filter course specification.	
Sheet		Note what sheet in the plan set contains the inter course specification.	

		<del>ient "E"</del>
If a bioretention	area is proposed:	
YES ac	Drainage Area no larger than 5 ac?	← yes
cf	V = Volume of storage ³ (attach a stage-storage table)	<u>&gt;</u> WQV
inche	s D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	Note what sheet in the plan set contains the filter course specification	
:1	Pond side slopes	<u>&gt; 3</u> :1
Sheet	Note what sheet in the plan set contains the planting plans and surface cover	
If porous paveme	ent is proposed:	
Asphalt	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
0.0 acres	A _{SA} = Surface area of the pervious pavement	
1.4 :1	Ratio of the contributing area to the pervious surface area	≤ 5:1
12.0 inche	s D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	8 Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019



## FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

#### Type/Node Name:

#### **Porous Pavement PP2**

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

0.08 acacA = Area draining to the practice0.04 acA = Impervious area draining to the practice, in decimal form0.49 unitlessI = Percent impervious area draining to the practice, in decimal form0.49 unitlessWQV = 1" x N x A147 cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")37 cf25% x WQV (check calc for sufface sand filter volume)110 cf75% x WQV (check calc for sufface sand filter volume)Not RequiredMethod of Pretreatment? (not required for clean or roof runoff)cfVgo = Sediment forebay volume, if used for pretreatment25% WQVCalculate time to drain if system IS NOT underdrained:1,550sfA ₂₀ = Sufface area of the practice10.00iphKsatopisich = Design infiltration rate ¹ if Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?Yes/No(Use the calculations below)0.1hoursT cease = Drain time = V / (As* * 1ctsice)cfSugor = Discharge at the E _{wore} (attach stage-discharge table)cfFeecfE _{wore} = Elevation of the underdrain (UD), if applicable155.00feetE _{wore} = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)156.07feetE _{wore} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)155.00feetE _{wore} = Elevation of the bottom of the filter course21'6.67feetD _{wore} = Depth to DHWT (if mone found, enter the lowes	Yes		Check if you reviewed the restrictions on unlined systems outlined in Env-Wg 1508.0	7(a).
0.49decimal a1 = Percent impervious area draining to the practice, in decimal form0.49unitless Rv = Runoff coefficient = 0.05 + (0.9 x I) WQV = 1" x Rv x A147cfWQV conversion (ac-in x 43,560 sf/ac x 1fr/12") 25% x WQV (check calc for surface sand filter volume)110cf75% x WQV (check calc for surface sand filter volume)110cf75% x WQV (check calc for surface sand filter volume)100cfVstt QV conversion (ac-in x 43,560 sf/ac x 1fr/12")25% WQVCalculate time to drain if system IS NOT underdrained: 1,550 sfA sta1,550 sfA staSurface area of the practice10.00iphKsat _{DESION} Design infiltration rate ¹ If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provide? Ves/NoVes/No(Use the calculations below) $< 72$ -hrsCalculate time to drain if system IS underdrained: If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provide? Ves/Noves/NoUse the calculations below) $< 72$ -hrsCalculate time to drain if system IS underdrained: If tEwave Elevation of WQV (attach stage-storage table) cfscfQ _{wave} = Discharge at the E _{wave} (attach stage-discharge table) cfscfE _{wave} = Elevation of the bottom of the filter course material ² feetE _{wave} = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)155.00feetE _{wave} = Depth to SHWT (if none found, enter the lowest elevation of the test pit)161.67feetD _{r(to BINC} = Depth to SHWT (from the bottom of the f	0.08	ас		
0.49unitless 0.04ac-in ac-in WQV-1" x Rv x A147cfWQV-1" x Rv x A147cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")37cf25% x WQV (check calc for surface sand filter volume)110cf75% x WQV (check calc for surface sand filter volume)Not RequiredMethod of Pretreatment? (not required for clean or roof runoff)cfV _{SED} = Sediment forebay volume, if used for pretreatment1.550sfA _{SA} = Surface area of the practice1.000iphKsat topEsion = Design infiltration rate ¹ if Ksat (prior to factor of safety) is <0.50 iph, has an underdrain been provided?	0.04	ас	$A_{I}$ = Impervious area draining to the practice	
0.04ac-in 147VQV = 1" x Rv x A147cfVQV conversion (ac-in x 43,560 sf/ac x 1f/12")37cf25% x WQV (check calc for sediment forebay volume)100cf75% x WQV (check calc for surface sand filter volume)Not RequiriedMethod of Pretreatment? (not required for clean or roof runoff)cfVscp = Sediment forebay volume, if used for pretreatment $\geq$ 25% WQVCalculate time to drain if system IS NOT underdrained:1,550 sfA.s. = Surface area of the practice10.00iphKsat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	0.49	decimal	I = Percent impervious area draining to the practice, in decimal form	
147cfWQV conversion (ac-in x 43,560 sf/ac x 1f/12")37cf25% x WQV (check calc for sediment forebay volume)110cf75% x WQV (check calc for surface sand filter volume)Not RequiriedMethod of Pretreatment? (not required for clean or roof runoff)cf $V_{stD}$ = Sediment forebay volume, if used for pretreatment25% wQVCalculate time to drain if system IS NOT underdrained:1,550sfA _{SA} = Surface area of the practice10.00iphKsat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	0.49	unitless	$Rv = Runoff coefficient = 0.05 + (0.9 \times I)$	
37 cf25% x WQV (check calc for sediment forebay volume)110 cf75% x WQV (check calc for surface sand filter volume)Not RequiredMethod of Pretreatment? (not required for clean or roof runoff)cfV SEDSediment forebay volume, if used for pretreatment $\geq$ 25% WQVCalculate time to drain if system IS NOT underdrained:1,550sfA _{SA} = Surface area of the practice10.00iphKsat persion = Design infiltration rate ¹ If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	0.04	ac-in	WQV= 1" x Rv x A	
110cf75% x WQV (check calc for surface sand filter volume)Not RequiredMethod of Pretreatment? (not required for clean or roof runoff)cf $V_{SED}$ = Sediment forebay volume, if used for pretreatment $\geq$ 25%WQVCalculate time to drain if system IS NOT underdrained:1,550 sf $A_{SA}$ = Surface area of the practice10.00iphKsat_DESIGN= Design infiltration rate ¹ If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	147	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
Not RequriredMethod of Pretreatment? (not required for clean or roof runoff)cf $V_{SED}$ = Sediment forebay volume, if used for pretreatment $\geq$ 25%WQVCalculate time to drain if system IS NOT underdrained:1,550sf $A_{SA}$ = Surface area of the practice10.00iphKsat_DesionDesign infiltration rate ¹ iff Kasal (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	37	cf	25% x WQV (check calc for sediment forebay volume)	
cf $V_{SED}$ = Sediment forebay volume, if used for pretreatment $\geq 25\%WQV$ Calculate time to drain if system IS NOT underdrained:1,550sf $A_{SA}$ = Surface area of the practice10.00iphKsat _{DESIGN} = Design infiltration rate ¹ if Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	110	cf	75% x WQV (check calc for surface sand filter volume)	
Calculate time to drain if system IS NOT underfrained:	Not Re	qurired	Method of Pretreatment? (not required for clean or roof runoff)	
1,550sf $A_{SA} =$ Surface area of the practice10.00iphKsat_DESIGN = Design infiltration rate ¹ If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?		cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>&gt;</u> 25%WQV
10.00iphKsat _{DESIGN} = Design infiltration rate ¹ 	Calculate ti	me to drain	if system IS NOT underdrained:	
If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided? Yes/No(Use the calculations below)0.1hoursTDranin= Drain time = V / (A_{SA} * 1_{DESIGN}) $\leq$ 72-hrsCalculate time to drain if system IS underdrained: ft $E_{WQV} =$ Elevation of WQV (attach stage-storage table) $\leq$ 72-hrsCalculate time to drain if system IS underdrained: ft $E_{WQV} =$ Elevation of WQV (attach stage-discharge table) $<$ 72-hrsCalculate time to drain if system IS underdrained: ft $E_{WQV} =$ Elevation of WQV (attach stage-discharge table) $<$ 72-hrs161.67feet $E_{rc} =$ Elevation of the bottom of the filter course material ² feet $E_{UD} =$ Invert elevation of the underdrain (UD), if applicable155.00feet $E_{SHWT} =$ Elevation of bedrock (if none found, enter the lowest elevation of the test pit)155.00feet $E_{ROCK} =$ Elevation of bedrock (if none found, enter the lowest elevation of the test pit)161.67feet $D_{FC to UD} =$ Depth to UD from the bottom of the filter course6.67feet $D_{FC to SHWT} =$ Depth to SHWT from the bottom of the filter course6.67feetD_{FC to SHWT} = Depth to SHWT from the bottom of the filter course163.50ftElevation of the 50-year storm event (infiltration can be used in analysis)163.50ftElevation of the top of the practiceYES50 peak elevation < Elevation of the top of the practice	1,550	sf	A _{SA} = Surface area of the practice	
Yes/No(Use the calculations below) $< 72$ -hrs0.1hoursTDRAIN= Drain time = V / (A _{SA} * I _{DESIGN} ) $\leq$ 72-hrsCalculate time to drain if system IS underdrained: ftElevation of WQV (attach stage-storage table) $< ft$ cfs $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $< ft$ rhoursTDRAIN = Drain time = 2WQV/Q _{WQV} $\leq$ 72-hrs161.67feet $E_{FC}$ = Elevation of the bottom of the filter course material $< ft$ feet $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable $< ft$ 155.00feet $E_{SHWT}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)155.00feet $E_{IPCK}$ = Depth to UD from the bottom of the filter course $\geq 1^{1}$ 6.67feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1^{1}$ 6.67feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1^{1}$ 160.93ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)163.50ftElevation of the top of the practice $< yes$ YESS0 peak elevation $\leq Elevation of the top of the practice< yesYESDrainage Area check.< 10 accfV = Volume of storage3 (attach a stage-storage table)\geq 75\%WQVinchesD_{FC} = Filter course thicknesswithin GPASheetNote what sheet in the plan set contains the filter course specification.$	10.00	iph	Ksat _{DESIGN} = Design infiltration rate ¹	
0.1       hours       T DRAIN       E Drain time = V / (A _{SA} * I _{DESIGN} ) $\leq$ 72-hrs         Calculate time to drain if system IS underdrained:       ft $E_{WQV}$ = Elevation of WQV (attach stage-storage table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$ $Q_{WQV}$ = Discharge at the $E_{WQV}$ (attach stage-discharge table) $cfs$		-	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
Calculate time to drain if system IS underdrained:		Yes/No	(Use the calculations below)	
ft $E_{WQV} =$ Elevation of WQV (attach stage-storage table)cfs $Q_{WQV} =$ Discharge at the $E_{WQV}$ (attach stage-discharge table) $I = hours$ $I_{DRAIN} =$ Drain time = $2WQV/Q_{WQV}$ $\leq 72$ -hrs161.67feet $E_{FC} =$ Elevation of the bottom of the filter course materialfeet $E_{UD} =$ Invert elevation of the underdrain (UD), if applicable155.00feet $E_{SHWT} =$ Elevation of SHWT (if none found, enter the lowest elevation of the test pit)155.00feet $E_{ROCK} =$ Elevation of bedrock (if none found, enter the lowest elevation of the test pit)161.67feet $D_{FC to UD} =$ Depth to UD from the bottom of the filter course $\geq 1'$ $0_{FC to UD} =$ Depth to UD from the bottom of the filter course $\geq 1'$ $0_{FC to BOCK} =$ Depth to SHWT from the bottom of the filter course $\geq 1'$ $0_{FC to BOCK} =$ Depth to SHWT from the bottom of the filter course $\geq 1'$ $0_{FC to BOCK} =$ Depth to SHWT from the bottom of the filter course $\geq 1'$ $0_{FC to SHWT} =$ Depth to SHWT from the bottom of the filter course $\geq 1'$ $0_{FC to SHWT} =$ Depth to SHWT from the bottom of the filter course $\geq 1'$ $0_{FC to SHWT} =$ Depth to practice $YES$ $SO$ peak elevation of the top of the practice $YES$ $SO$ peak elevation $\leq$ Elevation of the top of the practice $YES$ $ac$ Drainage Area check. $cf$ $V =$ Volume of storage ³ (attach a stage-storage table) $procesprocesprocesprocesprocesprocesprocesproces$	0.1	hours	$T_{DRAIN}$ = Drain time = V / ( $A_{SA} * I_{DESIGN}$ )	<u>&lt;</u> 72-hrs
cfsQ _{WQV} = Discharge at the $E_{WQV}$ (attach stage-discharge table)IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <th< td=""><td>Calculate ti</td><td>me to drain</td><td>if system IS underdrained:</td><td></td></th<>	Calculate ti	me to drain	if system IS underdrained:	
- hours       T DRAIN = Drain time = 2WQV/Q _{WQV} ≤ 72-hrs         161.67       feet $E_{FC}$ = Elevation of the bottom of the filter course material ² feet $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable         155.00       feet $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)         155.00       feet $E_{SHWT}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)         161.67       feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course       ≥ 1'         6.67       feet $D_{FC to ROCK}$ = Depth to SHWT from the bottom of the filter course       ≥ 1'         6.67       feet $D_{FC to ROCK}$ = Depth to SHWT from the bottom of the filter course       ≥ 1'         160.93       ft       Peak elevation of the 50-year storm event (infiltration can be used in analysis)       163.50         163.50       ft       Elevation of the top of the practice <b>&lt;</b> yes         YES       50 peak elevation ≤ Elevation of the top of the practice <b>&lt;</b> yes         If a surface sand filter or underground sand filter is proposed:        275 WQV         YES       ac       Drainage Area check.       <10 ac		ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
161.67feet $E_{FC} = \text{Elevation of the bottom of the filter course material}^2161.67feetE_{UD} = \text{Invert elevation of the underdrain (UD), if applicable155.00feetE_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test pit)155.00feetE_{SHWT} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test pit)161.67feetD_{FC to UD} = \text{Depth to UD from the bottom of the filter course}21'6.67feetD_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course}21'6.67feetD_{FC to ROCK} = \text{Depth to SHWT from the bottom of the filter course}21'160.93ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)163.50ftElevation of the top of the practiceYES50 peak elevation ≤ Elevation of the top of the practice< yes$		cfs	$Q_{WQV}$ = Discharge at the E _{WQV} (attach stage-discharge table)	
feet $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable155.00feet $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)155.00feet $E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)161.67feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ 6.67feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ 6.67feet $D_{FC to ROCK}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 160.93ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)163.50163.50ftElevation of the top of the practice $\leftarrow$ yesYES50 peak elevation $\leq$ Elevation of the top of the practice $\leftarrow$ yesIf a surface sand filter or underground sand filter is proposed: $\geq 75\%WQV$ inches $D_{FC}$ = Filter course thickness $18"$ , or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.				
155.00feet $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test pit)155.00feet $E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)161.67feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq$ 1'6.67feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq$ 1'6.67feet $D_{FC to ROCK}$ = Depth to SHWT from the bottom of the filter course $\geq$ 1'160.93ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)163.50163.50ftElevation of the top of the practice $\checkmark$ yesYES50 peak elevation $\leq$ Elevation of the top of the practice $\checkmark$ yesIf a surface sand filter or underground sand filter is proposed: $<$ 10 accfV = Volume of storage ³ (attach a stage-storage table) $\geq$ 75%WQVinches $D_{FC}$ = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	-	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u>&lt;</u> 72-hrs
155.00feet $E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test pit)161.67feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ 6.67feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ 6.67feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 160.93ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) $\geq 1'$ 163.50ftElevation of the top of the practice $\leftarrow$ yesYES50 peak elevation $\leq$ Elevation of the top of the practice $\leftarrow$ yesIf a surface sand filter or underground sand filter is proposed: $< 10 ac$ YESacDrainage Area check. $< 10 ac$ cfV = Volume of storage ³ (attach a stage-storage table) $\geq 75\%WQV$ inches $D_{FC}$ = Filter course thickness $18"$ , or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.				<u>&lt;</u> 72-hrs
161.67feet $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $\geq 1'$ 6.67feet $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ 6.67feet $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 160.93ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) $\geq 1'$ 163.50ftElevation of the top of the practice $\leftarrow$ yesYES50 peak elevation $\leq$ Elevation of the top of the practice $\leftarrow$ yesIf a surface sand filter or underground sand filter is proposed: $< 10 \text{ ac}$ YESacDrainage Area check. $< 10 \text{ ac}$ cfV = Volume of storage ³ (attach a stage-storage table) $\geq 75\%WQV$ inches $D_{FC} = Filter course thickness$ $18"$ , or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.		feet	$E_{FC}$ = Elevation of the bottom of the filter course material ²	<u>&lt;</u> 72-hrs
6.67feet $D_{FC \text{ to ROCK}}$ = Depth to bedrock from the bottom of the filter course $\geq 1'$ 6.67feet $D_{FC \text{ to SHWT}}$ = Depth to SHWT from the bottom of the filter course $\geq 1'$ 160.93ftPeak elevation of the 50-year storm event (infiltration can be used in analysis) $\geq 1'$ 163.50ftElevation of the top of the practice $\leftarrow$ yesYES50 peak elevation $\leq$ Elevation of the top of the practice $\leftarrow$ yesIf a surface sand filter or underground sand filter is proposed: $<$ 10 ac $cf$ V = Volume of storage ³ (attach a stage-storage table) $\geq 75\%WQV$ inches $D_{FC}$ = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	161.67	feet feet	$E_{FC}$ = Elevation of the bottom of the filter course material ² $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable	
6.67feet $D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course\geq 1'160.93ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)163.50ftElevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practiceYESacDrainage Area check.<10 ac$	161.67 	feet feet feet	$E_{FC}$ = Elevation of the bottom of the filter course material ² $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test p	it)
160.93 163.50ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)163.50ftElevation of the top of the practiceYES50 peak elevation $\leq$ Elevation of the top of the practice $\leftarrow$ yesIf a surface sand filter or underground sand filter is proposed: $\leftarrow$ 10 acYESacDrainage Area check.< 10 ac	161.67 155.00 155.00	feet feet feet feet	$E_{FC}$ = Elevation of the bottom of the filter course material ² $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test p $E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test	it) pit)
163.50ftElevation of the top of the practiceYES50 peak elevation $\leq$ Elevation of the top of the practice $\leftarrow$ yesIf a surface sand filter or underground sand filter is proposed: $\leftarrow$ yesYESacDrainage Area check. $<$ 10 accfV = Volume of storage ³ (attach a stage-storage table) $\geq$ 75%WQVinchesD _{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	161.67 155.00 155.00 161.67	feet feet feet feet feet	$E_{FC}$ = Elevation of the bottom of the filter course material ² $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test p $E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course	it) pit) <b>≥1'</b>
YES50 peak elevation $\leq$ Elevation of the top of the practice $\leftarrow$ yesIf a surface sand filter or underground sand filter is proposed: $\vee$ YESacDrainage Area check. $<$ 10 accfV = Volume of storage ³ (attach a stage-storage table) $\geq$ 75%WQVinchesD _{FC} = Filter course thickness18", or 24" ifSheetNote what sheet in the plan set contains the filter course specification.	161.67 155.00 155.00 161.67 6.67	feet feet feet feet feet feet	$\begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC \text{ to } UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC \text{ to } ROCK} = \text{Depth to bedrock from the bottom of the filter course} \end{split}$	it) pit) ≥1' ≥1'
If a surface sand filter or underground sand filter is proposed:          YES       ac       Drainage Area check.       <10 ac	161.67 155.00 155.00 161.67 6.67 6.67	feet feet feet feet feet feet	$\begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course} \\ & D_{FC to SHWT} = \text{Depth to SHWT from the bottom of the filter course} \end{split}$	it) pit) ≥1' ≥1'
YES       ac       Drainage Area check.       < 10 ac	161.67 155.00 155.00 161.67 6.67 6.67 160.93	feet feet feet feet feet feet feet ft	$\begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test p} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course} \\ & D_{FC to SHWT} = \text{Depth to SHWT from the bottom of the filter course} \\ & Peak elevation of the 50-year storm event (infiltration can be used in analysis) \end{split}$	it) pit) ≥1' ≥1'
cfV = Volume of storage³ (attach a stage-storage table) $\geq$ 75%WQVinchesD _{FC} = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	161.67 155.00 155.00 161.67 6.67 6.67 160.93 163.50 YES	feet feet feet feet feet feet ft ft	$\begin{split} & E_{FC} = \text{Elevation of the bottom of the filter course material}^2 \\ & E_{UD} = \text{Invert elevation of the underdrain (UD), if applicable} \\ & E_{SHWT} = \text{Elevation of SHWT (if none found, enter the lowest elevation of the test p} \\ & E_{ROCK} = \text{Elevation of bedrock (if none found, enter the lowest elevation of the test} \\ & D_{FC to UD} = \text{Depth to UD from the bottom of the filter course} \\ & D_{FC to ROCK} = \text{Depth to bedrock from the bottom of the filter course} \\ & D_{FC to SHWT} = \text{Depth to SHWT from the bottom of the filter course} \\ & \text{Peak elevation of the 50-year storm event (infiltration can be used in analysis)} \\ & \text{Elevation of the top of the practice} \\ & 50 \text{ peak elevation } \leq \text{Elevation of the top of the practice} \\ \end{aligned}$	it) pit) ≥1' ≥1' ≥1' ≥1'
inchesDFC = Filter course thickness18", or 24" if within GPASheetNote what sheet in the plan set contains the filter course specification.	161.67 155.00 155.00 161.67 6.67 6.67 160.93 163.50 YES If a surface	feet feet feet feet feet feet ft ft	$E_{FC}$ = Elevation of the bottom of the filter course material ² $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test p $E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation $\leq$ Elevation of the top of the practice or underground sand filter is proposed:	it) pit) ≥ 1' ≥ 1' ≥ 1' < yes
inches       D _{FC} = Filter course thickness       within GPA         Sheet       Note what sheet in the plan set contains the filter course specification.	161.67 155.00 155.00 161.67 6.67 6.67 160.93 163.50 YES If a surface	feet feet feet feet feet ft ft sand filter ac	$E_{FC}$ = Elevation of the bottom of the filter course material ² $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test p $E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation $\leq$ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	it) pit) ≥ 1' ≥ 1' ≥ 1' < yes
	161.67 155.00 155.00 161.67 6.67 6.67 160.93 163.50 YES If a surface	feet feet feet feet feet ft ft sand filter ac	$E_{FC}$ = Elevation of the bottom of the filter course material ² $E_{UD}$ = Invert elevation of the underdrain (UD), if applicable $E_{SHWT}$ = Elevation of SHWT (if none found, enter the lowest elevation of the test p $E_{ROCK}$ = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation $\leq$ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check.	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
Yes/No Access grate provided? $\leftarrow$ yes	161.67 155.00 155.00 161.67 6.67 6.67 160.93 163.50 YES If a surface	feet feet feet feet feet ft ft sand filter ac cf	$      E_{FC} = Elevation of the bottom of the filter course material2       E_{UD} = Invert elevation of the underdrain (UD), if applicable       E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p       E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test D       E_{ROCK} = Depth to UD from the bottom of the filter courseD_{FC to UD} = Depth to UD from the bottom of the filter courseD_{FC to ROCK} = Depth to bedrock from the bottom of the filter course       D_{FC to SHWT} = Depth to SHWT from the bottom of the filter coursePeak elevation of the 50-year storm event (infiltration can be used in analysis)Elevation of the top of the practice50 peak elevation \leq Elevation of the top of the practiceor underground sand filter is proposed:Drainage Area check.V = Volume of storage3 (attach a stage-storage table)$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
-	161.67 155.00 155.00 161.67 6.67 6.67 160.93 163.50 YES If a surface YES	feet feet feet feet feet feet ft ft sand filter ac cf inches	$E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage3 (attach a stage-storage table) D_{FC} = Filter course thickness$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

		ent "E"	
If a bioretention	area is proposed:		
YES ac	Drainage Area no larger than 5 ac?	← yes	
cf	V = Volume of storage ³ (attach a stage-storage table)	<u>&gt;</u> WQV	
inche	s D _{FC} = Filter course thickness	18", or 24" if within GPA	
Sheet	Note what sheet in the plan set contains the filter course specification		
:1	Pond side slopes	<u>&gt; 3</u> :1	
Sheet	Note what sheet in the plan set contains the planting plans and surface cover		
If porous paveme	nt is proposed:		
Asphalt	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)		
0.0 acres	A _{SA} = Surface area of the pervious pavement		
2.3 :1	Ratio of the contributing area to the pervious surface area	≤ 5:1	
12.0 inche	s D _{FC} = Filter course thickness	12", or 18" if within GPA	
Sheet	8 Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)	

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: January 2019

## **APPENDIX G**

## INSPECTION AND MAINTENANCE MANUAL

## **INSPECTION AND MAINTENANCE MANUAL**

#### COMMERCIAL DEVELOPMENT 100 LOWELL ROAD HUDSON NH

#### PREPARED BY: SFC ENGINEERING

#### **INTRODUCTION**

Proper operation and maintenance of the stormwater management features of the proposed development will ensure that the stormwater system and individual best management practices (BMPs) will remain effective at removing pollutants as designed, and that water quality objectives will be maintained.

Upon completion of all terrain alteration activities that direct stormwater to a certain practice, the landowner shall initiate inspection and maintenance of that practice. 100 Lowell Rd LLC, the landowner, or their designer shall be responsible to implement these activities.

If the ownership of the property is transferred, the new owner shall become the responsible party.

#### **REQUIRED MAINTENANCE**

Development of 100 Lowell Road in Hudson NH includes the following stormwater practices and their required maintenance. In general, the owner should inspect the practices at least once per year and after significant rain events. Any maintenance debris shall be properly disposed of. Contact Hudson Transfer Station at 603-886-6018 for guidance on disposal.

• **Infiltration Trench.** The development includes two infiltration trenches: one on the north side of the entrance driveway and one on the north side of the exit driveway. The infiltration trench is a stone trench to receive and infiltrate stormwater runoff.

Prevent sediment and debris from clogging the trench by maintaining grass cover upstream and around the practice. Any exposed soil upstream or around the practice needs to be seeded and stabilized.

Any trash or debris that may collect on the practice should be removed.

Contact a SFC if loss of infiltration is observed.

• **Bioretention Area.** The development includes a bioretention area at the front of the property between the two driveways. The bioretention area is a grass depression that

receives and infiltrate stormwater runoff. The depression includes a grass weir as an overflow to discharge stormwater that cannot be infiltrated.

Prevent sediment and debris from clogging the depression by maintaining grass cover upstream and around the practice. Any exposed soil upstream or around the practice needs to be seeded and stabilized. Sweep the pavement areas in the spring to remove any sand used during the winter.

Any trash or debris that may collect on the practice should be removed.

The grass within the practice should be maintained, with any bare patches seeded.

The outlet weir and the banks of the practice should be checked periodically to ensure no erosion has occurred.

Contact SFC Engineering if loss of infiltration is observed. The practice is designed to drain within 72 hours.

• **Porous Pavement.** The development includes porous pavement in two locations: the pavement and parking in front of the building (practice PP1) and the side (south) parking area (practice PP2). Check for standing water on the surface of the pavement after a precipitation event. If standing water remains within 30 minutes after rainfall has ended, cleaning of porous pavement is recommended.

Remove any trash or debris that may collect on the practice.

Pavement vacuuming shall be used regularly to remove sediment and organic debris that has accumulated on the pavement surface.

Pavement vacuuming should occur during spring cleanup following the last snow event and during fall clean up to remove accumulated debris, at a minimum.

Pressure washing can be an effective tool for cleaning clogged areas. This should occur at mid pressure, typically less than 500 psi and at an angle of 30 degrees or less.

Contact SFC if loss of infiltration is observed.

#### INSPECTION CHECKLISTS AND MAINTENANCE LOGS

Inspection checklists and maintenance log templates are included at the end of this section.

<u>Checklists</u> have been adapted from checklists developed by the Virginia Department of Conservation and Recreation. The checklists state the minimum frequency of inspections. BMPs shall also be inspected after large storm events, and corrective action shall be implemented as required.

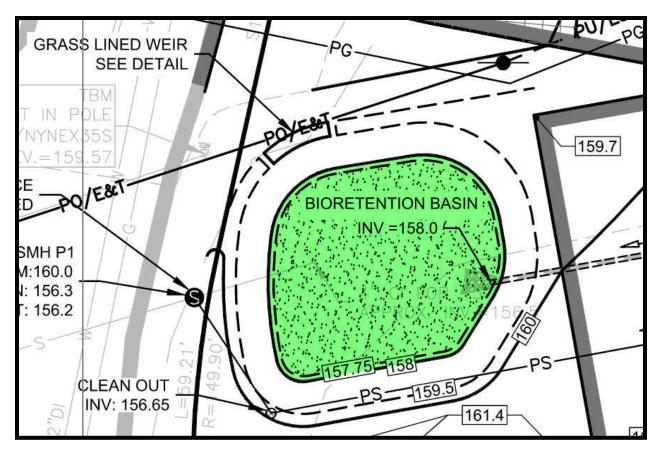
Any special concerns observed during routine or special inspections shall be reported to the owner immediately.

<u>Maintenance logs</u> have been adapted from logs developed by the Special Services Department of New Castle County in Delaware.

Maintenance logs shall be completed by the assigned inspector with initials to indicate which items were inspected. Comments shall be provided as necessary to document the state of the BMPs. Comments shall be dated.

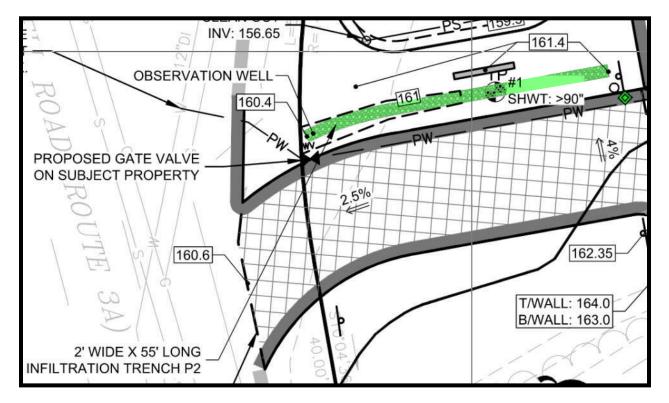
The completed log, along with appropriate checklists, shall be submitted to the owner and kept on file.

#### DEICING

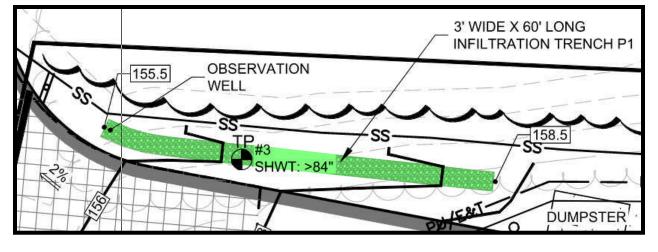

A deicing log is part of this long-term maintenance plan because proper application of deicing materials for winter maintenance is critical to the protection of water quality.

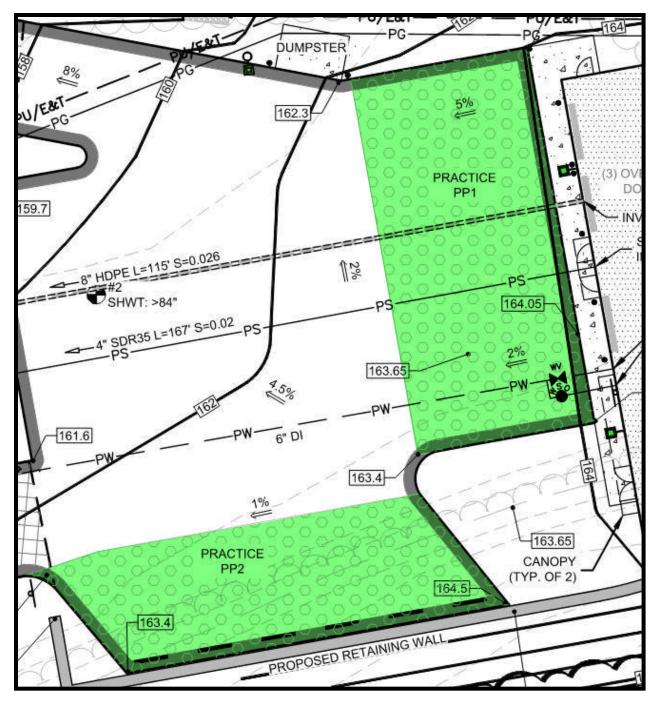
See the Anti-Icing Best Management Practices sheet prepared by the Technology Transfer Center included is included in this section.

Also reference NHDES fact sheet (WD-WMB-4) about Road Salt and Water Quality. This document can also be found at:


https://www.des.nh.gov/sites/g/files/ehbemt341/files/documents/wmb-4.pdf

END





**BIORETENTION BASIN** 

#### **INFILTRATION TRENCH P2**



#### **INFILTRATION TRENCH P1**





POROUS PAVEMENT AREAS PP1 & PP2

### Operation and Maintenance Inspection Checklist BIORETENTION BASIN

Date: Project:	100 Lowell Roa	d LLC	Date BMP Placed in Service:		
Location:	100 Lowell Roa	d - Hudson NH	Date Last Inspected:		
As-Built Plans Available:		Yes	No		
Bioretention	Facility Type:	Infiltration X	Filter Green	Alley	

**Warning:** If any bioretention facility component has a watertight cover; be careful regarding the possibility of flammable gases within the facility. Care should be taken lighting a match or smoking while inspecting facilities that are not vented. If the bioretention facility is in a completely enclosed vault, the **OSHA Confined Space** Entry procedures must be followed.

A customized maintenance schedule must be prepared for each bioretention facility, since the maintenance tasks will differ depending on the scale of bioretention, the landscaping template chosen, and the nature of the surface cover. This is a general guideline.

n:	Hydraulic Configuration:					
Surface	X On-Line facility					
Underground	Off-line facility					
a:	Type of pretreatment facility:					
No filtration media (e.g. dry well)	Sediment forebay (above ground					
Sand	Sediment chamber					
Bioretention soil	Grass channel					
Peat	X Grass filter strip					
Other:	Plunge pool					
_	Stone diaphram					
	Other:					
	_ Surface _ Underground a: _ No filtration media (e.g. dry well) _ Sand _ Bioretention soil _ Peat					

Element of BMP	Potential Problem	Does Problem Exist? Yes/No	How to fix problem	Who Will Address Problem	Comments
Contributing	Excessive trash/debris				
Drainage Area	Bare/exposed soil				
	Evidence of erosion				
	Excessive landscape waste/ yard				
Pretreatment	Maintenance access to pretreatment facility				
	Excessive trash/debris/sediment				
	Dead vegetation/exposed soil				
	Evidence of erosion				
Inlets	Inlets provide stable conveyance into facility				
	Excessive trash/debris/sediment accumulation at inlet				
<b>A</b>	Evidence of erosion at/around inlet				
Contributing Drainage Area/	Activities in drainage area allow oil & grease, or other unauthorized substances to enter practice			Owner or professional	
Overall (Annually)	Bare soil or sediment sources are seen in the contributing drainage area		Stabilize erosive immediately	Owner or professional	
	Litter is present within the practice		Remove immediately. Maintain contributing	Owner or	

Side Slopes	Soil is exposed, flow channels/	Stabilized using appropriate erosion control	Owner or	1
(Annually, after	rill/gullies are forming	measures	professional	
major storms )	Side slopes support nuisance	Animal burrows shall be backfilled and	Professional	
Inlet	animals/insects Inflow is hindered by trees/shrubs.	compacted. Burrowing animals shall be Woody vegetation should not be located at	Owner or	
(Annually)	innow is innuered by trees/sin ubs.	points of inflow. Trees should not grow	professional	
(		directly above underdrains, but be located		
		closer to the perimeter.		
Vegetation	Plants experience unsatisfactory	Replace contaminated mulch. If problem	Professional	
(monthly )	growth or mortality, there is	persists, test soils for hydrocarbons and		
	evidence of hydrocarbons or other deleterious materials	other toxic substances. If excess levels are found, the soils, plants and mulch may all		
		need to be replaced in accordance with the		
		approved construction plans		
			-	
	Invasive species contribute 10% of	Unauthorized plants should	Owner or professional	
	vegetation within the practice	immediately be removed from BMP and replaced	professional	
	Vegetation is dead and/or dying	Remove and replace.	Professional	
		Avoid using chemical fertilizers, unless		
		absolutely necessary. Otherwise, increase		
		the frequency of watering		
	Winter-killed or salt-killed	Replace with hardier	Owner or	
	vegetation is present	 species.	professional	
	Presence of invasive species/weeds	 		
	Dead vegetation/exposed soil			
Filter Media	The filter media is too low,	Amend media to contain 85-88% sand 8-12%	Professional	
(Annually )	compacted, or the composition is	soil fines 3-5% organic matter in form of leaf		
	inconsistent with design specifications	compost		
	Chemicals, fertilizers, and/or oil are	No dumping of yard wastes into practice.	Professional	
	present	Remove oil/grease from practice		
		immediately		
	Sediments are greater than 20% of	Check plant health, manually remove	Owner or	
	design depth	sediment immediately without damaging	professional	
	Exposed/bare soil	plants Backfill with soil, reseed, and protect area	Professional	
	Laposed/bare son	until vegetation is reestablished	FIOLESSIONAL	
	Topsoil is in poor condition, the pH	3 inch surface depth of loamy sand or sandy	Owner or	
	level is not 6-7, the composition is	loam texture, with less than 5% clay content,	professional	
	inappropriate	and organic matter content of at least 2% If		
		the pH is less than 6.5, spread limestone		
		over the practice		
	Filter bed is blocked and/or filled	Redistribute soil substrate and remove		
	inappropriately	sediments within two weeks		
Outlet/ Overflow	Evidence of blockage	Determine source of debris and promptly	Professional	
Spillway		 address		
Annually/after major	Litter is present within the practice	Remove immediately. Maintain contributing	Professional	
Outlet	Outlets provide stable conveyance			
	out of facility Excessive trash/debris/sediment			
	accumulation at inlet			
	Evidence of erosion at/around inlet			
Overall	Maintenance access to facility	 		
	Condition of structural components	 		
	Condition of hydraulic control			
	components Excessive trash/debris/sediment			
	Evidence of erosion		<u> </u>	
	Evidence of oil/chemical			
	accumulation			
	Evidence of standing water:			
	Ponding, Noticeable odors, Water			
	stains, Presence of algae or floating			
	Complaints from local residents			
	Mosquito proliferation			
	Encroachment on facility or			
l	easement by buildings or other			
	structures	1		

This checklist is based on a template prepared by the Virginia Department of Conservation and Recreation.

					DEC								At	tachment "E"	
					NOV	-									Fill in the date of inspection below the month and write your inItIals for each item inspected. Use one maintenance log per practice facility each year. See inspection checklist for inspection frequency. Reference New Hampshire Stormwater Manual, Volume 2, chapter 5 Contact SFC Engineering Partnership, Inc. at (603) 647-8700 will questions or concerns regarding inspection and maintenance
т					ОСТ	-									actice facilit :hapter 5 <i>aintenance</i>
	SIC				SEP	-									e log per pr Volume 2, c ction and m
INSIDE OUT PAINTING AND REMODELING IN HUDSON NH STORMWATER FACILITY MANAGEMENT	INSPECTION AND MAINTENANCE LOG FOR BMP'S				AUG	-									te of inspection below the month and write your inItIals for each item inspected. Use one maintenance log per practice facili See inspection checklist for inspection frequency. Reference New Hampshire Stormwater Manual, Volume 2, chapter 5 Contact SFC Engineering Partnership, Inc. at (603) 647-8700 will questions or concerns regarding inspection and maintenance
PAINTING AND REMODELING IN STORMWATER FACILITY MANAGEMENT	CE LOG F	Rd LLC		ı Basin	JUL	-									d. Use one r e Stormwat <i>ncerns rega</i>
	TENANC	OWNER / RESPONSIBLE PARTY: 100 Lowell Rd LLC		NAME / NUMBER: Bioretention Basin	NUL	-									em inspected v Hampshire stions or co
ID REN	D MAIN	E PARTY: 1	INSPECTOR:	<b>NUMBER:</b> B	MAY	-									for each ite erence Nev 700 will que
NG AN WATER I	ION ANI	ESPONSIBL			APR	-									vour inltlals quency. Ref 603) 647-87
	NSPECT	WNER / RI		STORMWATER PRACTICE IDENTIFICATION	MAR	-									and write y spection fre hip, Inc. at (
OUTP	_	0		TICE IDEN	FEB	-									r the month cklist for ins ng Partnersl
NSIDE				ATER PRAC	JAN	-									ction below pection che C Engineerii
-				STORMW	month:	date:									ate of inspe See ins <i>Contact SF</i>
							EROSION	GRASS CUTTING	SEDIMENT REMOVAL	SOIL AMENDMENTS				WRITE COMMENTS НЕRE & REPORT TO RESPONSIBLE PARTY	Fill in the da

#### Operation and Maintenance Inspection Checklist INFILTRATION TRENCH P1

Date Project 100 Lowell Road LLC	NHDES/Permit Number Date BMP Placed in Service						
Location <u>100 Lowell Road – Hudson NH</u> Date of Last Inspection I							
As-Built Plans available: Y / N							
Infiltration Facility Type: Basin	Trench	X	Perm. Pavement				
Facility location:		Hydra	ulic configuration				
Surface		2	<u>X</u> On-line facility				
X Underground		-	Off-line facility				
Filtration Media		Туре	of pretreatment facility				
X No filtration media (e.g. dry we	ell)		Sediment forebay (above ground)				
Sand			Sedimentation chamber				
Bioretention soil			Grass channel				
Peat		X	Grass filter strip				
Other:			Plunge pool				
			Stone diaphragm				
			Other:				

Spill Prevention measures should be used when handling substances that contaminate stormwater. Releases of pollutants should be corrected as soon as identified.

Element of BMP	Potential Problem	Does Problem Exist? Yes/No	How to Fix Problem	Who Will Address Problem	Comments
Contributing	Excessive trash/debris				
Drainage	Bare/exposed soil				
Area	Evidence of erosion				
	Excessive landscape waste/ yard clippings				
Pretreatment	Maintenance access to pretreatment facility				
	Excessive trash/debris/sediment				
	Evidence of standing water: Ponding, Noticeable odors, Water stains, Presence of algae or floating aquatic vegetation				
	Evidence of clogging				
	Dead vegetation/exposed soil				
	Evidence of erosion				
Inlets	Inlets provide stable conveyance into facility				

Pasin Inlat	Excessive trash/debris/sediment accumulation at inlet Evidence of erosion at/around inlet		f analian aball ba		
Basin Inlet ( <i>twice a year</i> )	Stormwater flow to the vegetated basin is restricted. Weedy growth on rock surfaces might indicate sediment deposition or clogging.	identified a native soil erosion ch Inlet shall conveyand plugged. F	f erosion shall be and controlled when is exposed or annels are present. be cleared when ce capacity is Rock splash pads plenished to osion.	Owner or professional	
Embankment , Dikes, Berms & Side Slopes (yearly)	Water is not retained in the infiltration basin	stabilized erosion co when soil channels a Sources o	all immediately be using appropriate ontrol measures is exposed/ flow are forming. f erosion damage entified and	Owner or professional	
Overflow or Emergency Spillway (twice a year)	Pipe does not successfully carry excess water to an approved receiving system	cleared of debris whe conveyand plugged. D be repaire discovery.		Owner or professional	
	The reservoir does not perform as per specifications	when 25% capacity is of erosion identified a soil is exp other arma	shall be cleared of the conveyance s plugged. Sources damage shall be and controlled when osed. Rocks or ament shall be when only one layer of s.	Owner or professional	
Observation Well (every 2 years)	Condition of element is poor.	Replace o	bservation well if nd make sure it is still	Professional I	
Sediment/ Debris Management (yearly)	The capacity volume of the infiltration basin is compromised by sedimentation. Gauges located at the opposite ends of the basin indicate too much debris	exceeding be remove or sooner affected. F of sedimen	and debris 4" in depth shall de every 2-5 years if performance is Restricted sources nt and debris shall ed and prevented.	Professional	
Overall (yearly)	Access to the stormwater planter is unsafe and inefficient. Egress and ingress routes are not maintained to design standards. Roadways are unable to accommodate size and weight of vehicles.	maintenar and/or equ the stormy be remove ground co if erosion of	preventing ice personnel uipment access to vater planter shall ed. Gravel or ver shall be added occurs, e.g., due to or pedestrian traffic.	Owner or professional	

	Insects & Rodents are harbored in the stormwater planter.	Pest control measures shall be taken when insects/rodents are found to be present. If sprays are considered, then a mosquito larvicide, such as Bacillus thurendensis or Altoside formulations can be applied only if absolutely necessary and only by a licensed individual or contractor. Holes in the ground located in and around the stormwater planter shall be filled and compacted.	Professional	
Outlet	Outlets provide stable conveyance out of facility Excessive trash/debris/sediment			
	accumulation at inlet Evidence of erosion at/around inlet			
Overall	Maintenance access to facility Condition of structural components			
	Condition of hydraulic control components			
	Excessive trash/debris/sediment Evidence of erosion			
	Evidence of oil/chemical accumulation			
	Evidence of standing water: Ponding, Noticeable odors, Water stains, Presence of algae or floating aquatic vegetation			
	Complaints from local residents			
	Mosquito proliferation Encroachment on facility or easement by buildings or other structures			

					DEC						At	tachment "E"	
					NON								Fill in the date of inspection below the month and write your inItIals for each item inspected. Use one maintenance log per practice facility each year. See inspection checklist for inspection frequency. Reference New Hampshire Stormwater Manual, Volume 2, chapter 5 Contact SFC Engineering Partnership, Inc. at (603) 647-8700 will questions or concerns regarding inspection and maintenance
т					007								actice facilit hapter 5 <i>aintenance</i>
INSIDE OUT PAINTING AND REMODELING IN HUDSON NH STORMWATER FACILITY MANAGEMENT	P'S				SEP								te of inspection below the month and write your inItIals for each item inspected. Use one maintenance log per practice facili See inspection checklist for inspection frequency. Reference New Hampshire Stormwater Manual, Volume 2, chapter 5 Contact SFC Engineering Partnership, Inc. at (603) 647-8700 will questions or concerns regarding inspection and maintenance
T HUD	<b>ON AND MAINTENANCE LOG FOR BMP'S</b>				AUG								maintenanc ter Manual, arding inspe
PAINTING AND REMODELING IN STORMWATER FACILITY MANAGEMENT	CE LOG I	Rd LLC	-	I rench P1	JUL								ed. Use one e Stormwat oncerns rego
V MANA	ITENAN	OWNER / RESPONSIBLE PARTY: 100 Lowell Rd LLC		NAME / NUMBER: Intiltration Irench P1	NUL								em inspecte w Hampshii estions or co
ND REI FACILIT	ID MAIN	LE PARTY:	INSPECTOR:	NUMBER:	MAY								s for each it eference Ne 3700 will qu
ING AI WATER	<b>TION AN</b>	RESPONSIB			APR								your inltlal equency. Re (603) 647-8
<b>PAINT</b> STORM	INSPECTI	OWNER / I		NIFICATIO	MAR								h and write rspection fr ship, Inc. at
E OUT				SIORMWALER PRACIICE IDENTIFICATION	FEB								w the mont lecklist for ii ring Partner
INSIDI				VALER PR/	NAL								ection belo Ispection ch SFC Enginee
				SIURIM	month: date:								date of insp See ir <i>Contact</i> <u>5</u>
						EROSION	STONE CLEAR OF DEBRIS					WRITE COMMENTS НЕRE & REPORT TO RESPONSIBLE PARTY	Fill in the

#### Operation and Maintenance Inspection Checklist INFILTRATION TRENCH P2

Date Project <u>100 Lowell Road LLC</u>	NHDES/Permit Number						
Location <u>100 Lowell Road – Hudson NH</u> Date of Last Inspection	Date BMP Placed in Service						
As-Built Plans available: Y / N							
Infiltration Facility Type: Basin	Trench Perm. Pavement						
Facility location:	Hydraulic configuration						
Surface	$\underline{\mathbf{X}}$ On-line facility						
<u>X</u> Underground	Off-line facility						
Filtration Media	Type of pretreatment facility						
X No filtration media (e.g. dry v	vell) Sediment forebay (above ground)						
Sand	Sedimentation chamber						
Bioretention soil	Grass channel						
Peat	<u>X</u> Grass filter strip						
Other:	Plunge pool						
	Stone diaphragm						
	Other:						

Spill Prevention measures should be used when handling substances that contaminate stormwater. Releases of pollutants should be corrected as soon as identified.

Element of BMP	Potential Problem	Does Problem Exist? Yes/No	How to Fix Problem	Who Will Address Problem	Comments
Contributing	Excessive trash/debris				
Drainage	Bare/exposed soil				
Area	Evidence of erosion				
	Excessive landscape waste/ yard clippings				
Pretreatment	Maintenance access to pretreatment facility				
	Excessive trash/debris/sediment				
	Evidence of standing water: Ponding, Noticeable odors, Water stains, Presence of algae or floating aquatic vegetation				
	Evidence of clogging				
	Dead vegetation/exposed soil				
	Evidence of erosion				
Inlets	Inlets provide stable conveyance into facility				

Pasin Inlat	Excessive trash/debris/sediment accumulation at inlet Evidence of erosion at/around inlet			
Basin Inlet ( <i>twice a year</i> )	Stormwater flow to the vegetated basin is restricted. Weedy growth on rock surfaces might indicate sediment deposition or clogging.	Sources of erosion shall b identified and controlled w native soil is exposed or erosion channels are press Inlet shall be cleared when conveyance capacity is plugged. Rock splash pad shall be replenished to prevent erosion.	hen professional ent. n	
Embankment , Dikes, Berms & Side Slopes (yearly)	Water is not retained in the infiltration basin	Slopes shall immediately b stabilized using appropria erosion control measures when soil is exposed/ flow channels are forming. Sources of erosion damag shall be identified and controlled.	te professional	
Overflow or Emergency Spillway (twice a year)	Pipe does not successfully carry excess water to an approved receiving system	Overflow pipe shall be cleared of sediment and debris when 50% of the conveyance capacity is plugged. Damaged pipe sh be repaired or replaced up discovery.	pon	
	The reservoir does not perform as per specifications	Overflow shall be cleared when 25% of the conveya capacity is plugged. Source of erosion damage shall be identified and controlled w soil is exposed. Rocks or other armament shall be replaced when only one la rock exists.	ces le hen	
Observation Well (every 2 years)	Condition of element is poor.	Replace observation well i needed and make sure it is capped.		
Sediment/ Debris Management (yearly)	The capacity volume of the infiltration basin is compromised by sedimentation. Gauges located at the opposite ends of the basin indicate too much debris	Sediment and debris exceeding 4" in depth sha be removed every 2-5 yea or sooner if performance i affected. Restricted source of sediment and debris sh be identified and preventer	rs s es all	
Overall (yearly)	Access to the stormwater planter is unsafe and inefficient. Egress and ingress routes are not maintained to design standards. Roadways are unable to accommodate size and weight of vehicles.	Obstacles preventing maintenance personnel and/or equipment access the stormwater planter shi be removed. Gravel or ground cover shall be add if erosion occurs, e.g., due vehicular or pedestrian tra	all led e to	

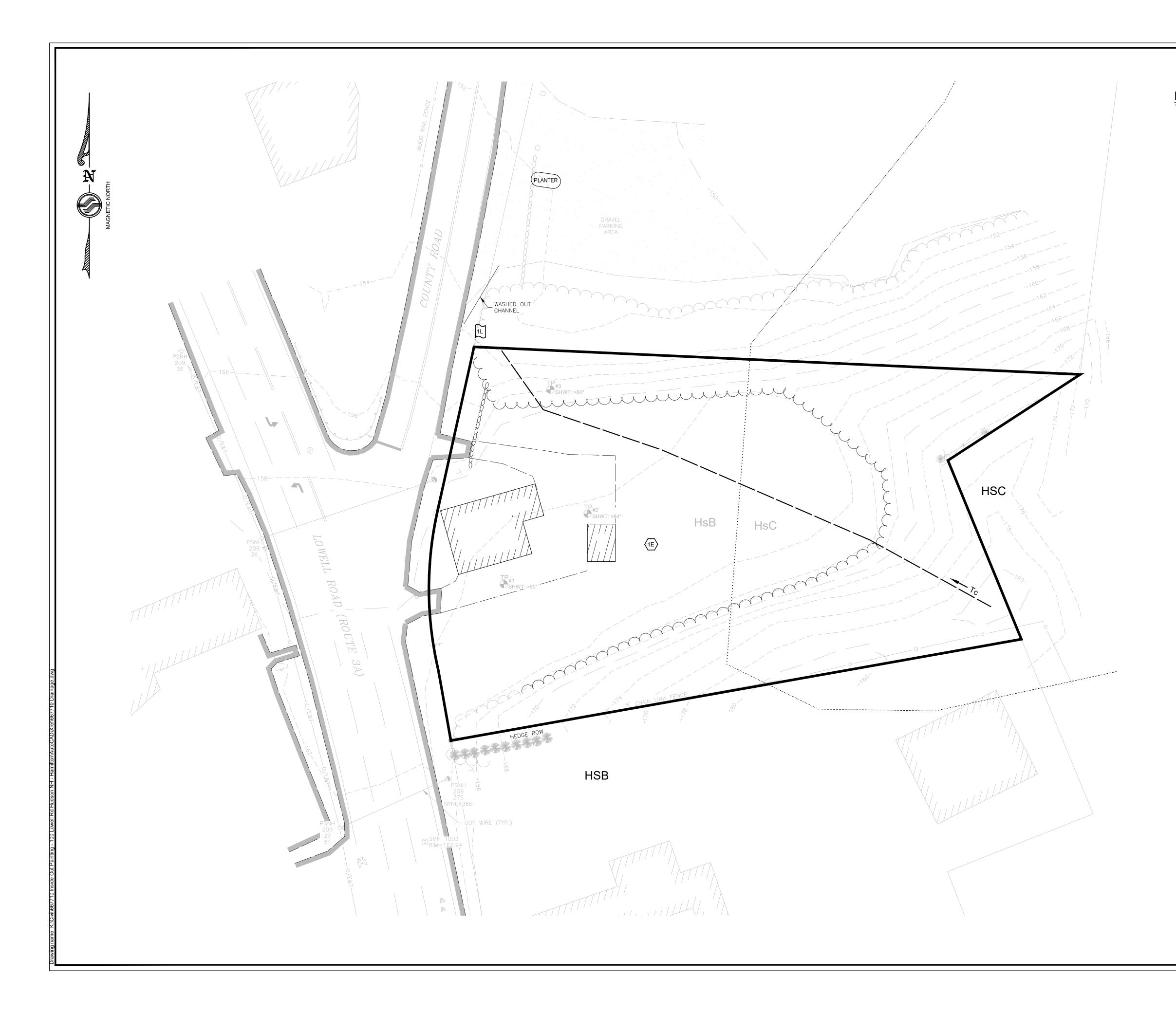
	Insects & Rodents are harbored in the stormwater planter.	Pest control measures shall be taken when insects/rodents are found to be present. If sprays are considered, then a mosquito larvicide, such as Bacillus thurendensis or Altoside formulations can be applied only if absolutely necessary and only by a licensed individual or contractor. Holes in the ground located in and around the stormwater planter shall be filled and compacted.	Professional	
Outlet	Outlets provide stable conveyance out of facility Excessive trash/debris/sediment accumulation at inlet			
	Evidence of erosion at/around inlet			
Overall	Maintenance access to facility Condition of structural components			
	Condition of hydraulic control components			
	Excessive trash/debris/sediment Evidence of erosion			
	Evidence of oil/chemical accumulation			
	Evidence of standing water: Ponding, Noticeable odors, Water stains, Presence of algae or floating aquatic vegetation			
	Complaints from local residents			
	Mosquito proliferation Encroachment on facility or easement by buildings or other structures			

				,	DEC							At	tachment "E"	
					NOV	_								Fill in the date of inspection below the month and write your inItIals for each item inspected. Use one maintenance log per practice facility each year. See inspection checklist for inspection frequency. Reference New Hampshire Stormwater Manual, Volume 2, chapter 5 Contact SFC Engineering Partnership, Inc. at (603) 647-8700 will questions or concerns regarding inspection and maintenance
т					ост									actice facilit hapter 5 <i>aintenance</i>
INSIDE OUT PAINTING AND REMODELING IN HUDSON NH STORMWATER FACILITY MANAGEMENT	P'S			,	SEP									te of inspection below the month and write your inItIals for each item inspected. Use one maintenance log per practice facili See inspection checklist for inspection frequency. Reference New Hampshire Stormwater Manual, Volume 2, chapter 5 Contact SFC Engineering Partnership, Inc. at (603) 647-8700 will questions or concerns regarding inspection and maintenance
	OR BM				AUG									maintenanc er Manual, irding inspe
PAINTING AND REMODELING IN STORMWATER FACILITY MANAGEMENT	<b>ON AND MAINTENANCE LOG FOR BMP'S</b>	Rd LLC		rench PZ	JUL									d. Use one e Stormwat incerns rego
MODEI Y MANA	TENAN	OWNER / RESPONSIBLE PARTY: 100 Lowell Rd LLC		NAME / NUMBER: INTILITATION I RENCH P2	NUL									em inspecte w Hampshir estions or co
<b>VD REN</b> FACILITY	D MAIN	LE PARTY:	INSPECTOR:	NUMBER: 1	MAY									s for each ite ference Nev 700 will que
ING AN WATER	<b>TION AN</b>	ESPONSIB			APR									your inltlals equency. Re (603) 647-8
<b>PAINT</b> STORM	INSPECTI	DWNER / R		SIURMWALER PRACTICE IDENTIFICATION	MAR									h and write spection fre ship, Inc. at
					FEB									w the montl ecklist for in ing Partners
INSIDE				VAI EK PKA	NAL									sction belov spection che ^E C Engineer
				SIURIMIV	month:	uale.								late of inspe See in: <i>Contact S</i> i
							EROSION	STONE CLEAR OF DEBRIS					WRITE COMMENTS НЕRE & REPORT TO RESPONSIBLE PARTY	Fill in the d

#### <del>ttachment "E"</del> **Regular Inspection and Maintenance Guidance for Porous Pavements** Regular inspection and maintenance is critical to the effective operation of porous pavement. It is the responsibility of the owner to maintain the pavement in accordance with the minimum design standards. This page provides guidance on maintenance activities that are typically required for these systems, along with the suggested frequency for each activity. Individual systems may have more, or less, frequent maintenance needs, depending on a variety of factors including the occurrence of large storm events, seasonal changes, and traffic conditions. **Inspection Activities** Visual inspections are an integral part of system maintenance. This includes monitoring pavement to ensure water drainage, debris accumulation, and surface deterioration. FREQUENCY **ACTIVITY** Check for standing water on the surface of the pavement after a precipitation event. If standing water remains within 30 minutes after rainfall had ended, cleaning of porous pavement is recommended. Vacuum sweeper shall be used regularly to remove sediment and organic debris on the pavement surface. The sweeper may be fitted with water jets. Pavement vacuuming should occur during spring cleanup following the last snow event to remove accumulated debris, at minimum. 2 to 4 times per year, more Pavement vacuuming should occur during fall cleanup to remove dead leaves, at frequently for high use sites or minimum. sites with higher potential for run-Power washing can be an effective tool for cleaning clogged areas. This should occur at on mid pressure typically less than 500 psi and at an angle of 30 degrees or less. Check for debris accumulating on pavement, especially debris buildup in winter. For loose debris, a power/leaf blower or gutter broom can be used to remove leaves and trash. Check for damage to porous pavements from non-design loads. Damaged areas may be repaired by use of infrared heating and rerolling of pavement. Typical costs may be 2,000/ day for approximately 500 ft of trench. Maintenance Activities Routine preventative cleaning is more effective than corrective cleaning. Activity Frequency Controlling run-on and debris tracking is key to extending the life of porous surfaces. Whenever vacuuming Erosion and sedimentation control of adjacent areas is crucial. adjacent porous pavements Vacuuming adjacent non porous asphalt can be effective at minimizing run-on. Repairs may be needed from cuts of utilities. Repairs can be made using standard (nonporous) asphalt for most damages. Repairs using standard asphalt should not exceed 15% of total area. Do not store materials such as sand/salt, mulch, soil, yard waste, and other stock piles on porous surfaces. Stockpiled snow areas on porous pavements will require additional maintenance and vacuuming. Stockpiling on snow on porous pavements is not recommended and will lead As needed to premature clogging.

Damage can occur to porous pavement from non-design loads. Precautions such as clearance bars, signage, tight turning radius, high curbs, and video surveillance may be required where there is a risk off non-design loads.

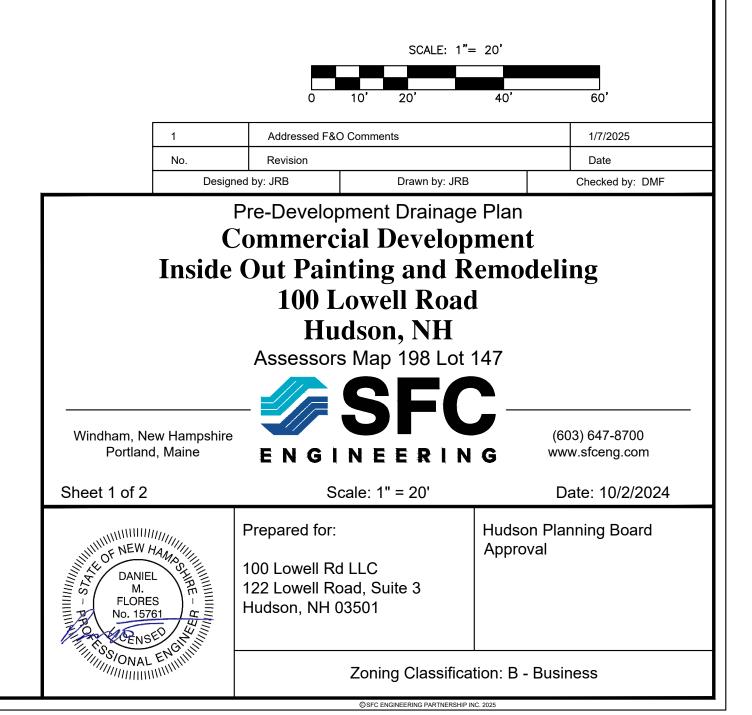
Posting of signage is recommended indicating presence of porous pavement. Signage should display limitation of design load (i.e. passenger vehicles only, light truck traffic, etc. as per pavement durability rating.)

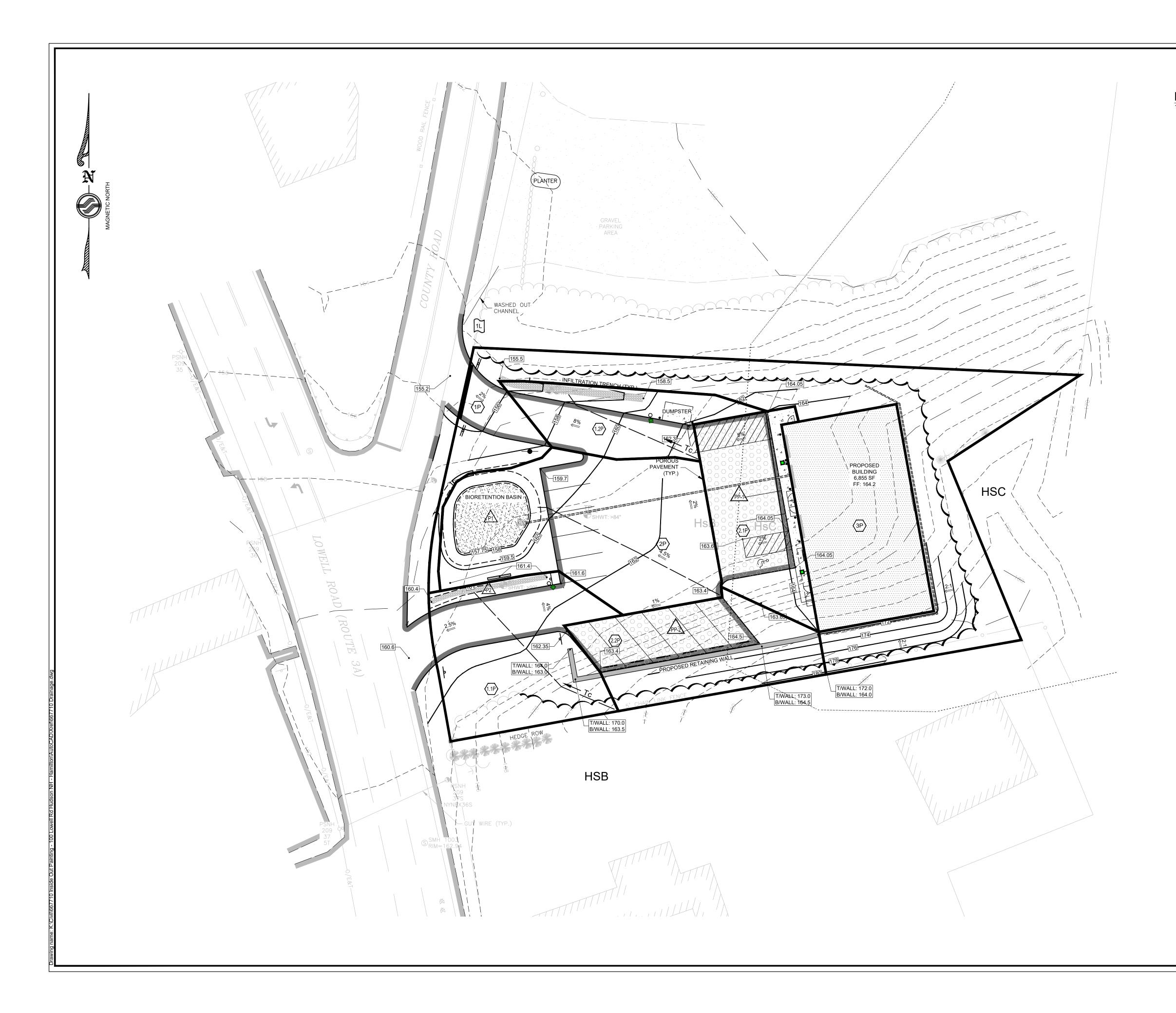

2/2011, University of New Hampshire Stormwater Center

	<u> </u>	ttachment "E"						
CHECKLIST FOR INSPECTION OF POROUS PAVEMENTS								
Location: 100 Lowell Rd Hudson NH Inspecto								
	Site Cor	nditions:						
		Comments/Corrective Action						
s available	at UNHSC							
s	U							
S	U							
S	U							
S	U							
S	U							
S	U							
iter large st	orm events)							
S	U							
S	U							
S	U							
S	U							
S	U							
S	U							
S	U	]						
s	U							
	Satisfact Unsatisfa s available S S S S S S S ter large sta S S S S S S S S S S S S S S S S S S S	Satisfactory (S) or Unsatisfactory (U)         Satisfactory (S) or Unsatisfactory (U)         s available at UNHSC         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U         S       U						

Corrective Action Needed	Due Date
1.	
2.	
3.	

2/2011, University of New Hampshire Stormwater Center


				DEC								At	tachment "E"	
														Fill in the date of inspection below the month and write your inItIaIs for each item inspected. Use one maintenance log per practice facility each year. See inspection checklist for inspection frequency. Reference New Hampshire Stormwater Manual, Volume 2, chapter 5 Contact SFC Engineering Partnership, Inc. at (603) 647-8700 will questions or concerns regarding inspection and maintenance
<b>–</b>				ост										actice facilit [,] hapter 5 <i>aintenance</i>
	S'q			SEP										e log per pr. Volume 2, c ction and m
INSIDE OUT PAINTING AND REMODELING IN HUDSON NH STORMWATER FACILITY MANAGEMENT	<b>ON AND MAINTENANCE LOG FOR BMP'S</b>			AUG										te of inspection below the month and write your inItIals for each item inspected. Use one maintenance log per practice facili See inspection checklist for inspection frequency. Reference New Hampshire Stormwater Manual, Volume 2, chapter 5 Contact SFC Engineering Partnership, Inc. at (603) 647-8700 will questions or concerns regarding inspection and maintenance
PAINTING AND REMODELING IN STORMWATER FACILITY MANAGEMENT	CE LOG F	Road LLC	ement	JUL										ed. Use one e Stormwat <i>incerns rego</i>
VODEI Y MANA	ITENAN	RESPONSIBLE PARTY: 100 Lowell Road LLC	VSPECTOR: VNUMBER: Porous Pavement	NUL										em inspecte w Hampshir estions or co
ND REI FACILIT	ID MAIN	IBLE PARTY:	NUMBER:	MAY										s for each it eference Ne 8700 will qu
ING AI WATER		RESPONSIB	NAME /	APR										: your inltlal equency. Re (603) 647-8
<b>PAINT</b> STORM	INSPECTI	OWNER / I	STORMWATER PRACTICE IDENTIFICATION	MAR										th and write nspection fr <i>ship, Inc. a</i> t
E OUT			ACTICE IDEI	FEB										w the mont lecklist for ii ring Partner
INSIDI			<b>WATER PR</b> /	JAN										iection belo Ispection ch SFC Enginee
			STORM	month:	date:									date of insp See ir <i>Contact</i> <u>5</u>
						SALT/DEICING	DEBRIS CLEANUP	CONTROLLING RUN-ON	PAVEMENT CONDITION	SIGNAGE			WRITE COMMENTS НЕRE & REPORT TO RESPONSIBLE PARTY	Fill in the




## NOTES

 THE PURPOSE OF THIS PLAN IS TO DEPICT THE PREDEVELOPMENT CONDITIONS OF HUDSON PROPERTY MAP 198 LOT 147 CONSISTING OF 0.8 Ac.±

SOIL LEGEND						
SYMBOL	NAME	нsg				
Hs	HINCKLEY	Α				





NOTES 1. THE PURPOSE OF THIS PLAN IS TO DEPICT THE POST DEVELOPMENT CONDITIONS OF HUDSON PROPERTY MAP 198 LOT 147 CONSISTING OF 0.8 Ac.±

SOIL LEGEND						
SYMBOL	NAME	нsg				
Hs	HINCKLEY	Α				

	SCALE: 1"= 20'							
		0 10' 20'	40'	60'				
	1	Addressed F&O Comments		1/7/2025				
	No.	Revision		Date				
	Designe	d by: JRB Drawn by: JR	B	Checked by: DMF				
Portland	Post-Development Drainage Plan <b>Commercial Development</b> <b>Inside Out Painting and Remodeling</b> <b>100 Lowell Road</b> <b>Hudson, NH</b> Assessors Map 198 Lot 147 Windham, New Hampshire Portland, Maine							
Sheet 2 of 2		Scale: 1" = 20'	C	)ate: 10/2/2024				
Sheet 2 of 2	L S 61 P SHITT	Prepared for: 100 Lowell Rd LLC 122 Lowell Road, Suite 3 Hudson, NH 03501	Hudson Pla Approval	nning Board				
""""""""""""""""""""""""""""""""""""""	ENUM	Zoning Classification: B - Business						

Drawing: 667710 Drainage Layout: Post

PARTNERSHIP INC. 2025



January 7, 2025

Jay Minkarah Acting Town Planner 12 School Street Hudson, NH 03051

#### RE: Fuss & O'Neill Site Plan Review Dated October 23, 2024 Inside Out Painting and Remodeling 100 Lowell Road (Tax Map 198, Lot 147)

Mr. Jay Minkarah,

We are in receipt of the site plan review comments by Fuss & O'Neill dated October 23, 2024 for the Inside Out Painting and Remodeling project located at 100 Lowell Road (tax map 198 lot 147).

Note that since these comments were issued, the plans have been revised to increase parking, which was reviewed with the Planning Board at their November 13, 2024 public hearing. This change moves the bioretention area and introduces areas of porous pavement. The plans and drainage analysis have been updated to accommodate these changes, as well as to address comments from the Planning Board, which are described under the separate letter to the Planner dated January 15, 2025.

The following are the Fuss & O'Neill review comments, with SFC responses in **BLUE**.

#### 1. Site Plan Review Codes (HR 275)

a. Hudson Regulation (HR) 275-6.C. There currently are no sidewalks abutting the site. The applicant has not proposed adding any sidewalks to the site.

#### No comment

b. HR 275-6.I. The scope of this review does not include the adequacy of any fire protection provisions for the site. The applicant has shown a proposed six-inch fire service connection to the building.

#### No comment

c. HR 275-6.T. The applicant is proposing limited off-site improvements that include utility connections and driveway improvements. Other proposed work is within the subject site.

#### No comment

d. HR 275-8.C.(2)(a) and Zoning Ordinance (ZO) 334-15.A. The applicant has provided parking calculations on the plan set which show that 23 parking spaces are required for the professional office and business services use. The applicant has requested a waiver from the Regulation to allow only 11 parking spaces on site. Note #2 under Waiver Requests on the Site Development Plan should be revised to note 275-8.C.(2)(m), not 75-8.C.(2)(m).

0

0

0

The waiver note on the Site Development Plan (Sheet 3) has been updated. Note also that additional parking is provided, as reviewed with the Planning Board at their November 13, 2024 public hearing.

e. HR 275-8.C.(6).(b). The applicant has shown one loading area on the plan set. The applicant should review the need for a waiver from the size requirement as the space is only 35 feet long and 60 feet is required.

A waiver request has been added to the Site Development Plan (Sheet 3) for this, as also discussed with the Planning Board. Note also that Article II Section 275-8.C.6.b states "When it is demonstrated that a particular loading space will be used by shorter trucks, the minimum length may be reduced to 35 feet." The owner stated that 35 feet is sufficient for the size trucks they will be using. Note that the waiver request is included in our letter to the Planner.

f. HR 275-9.C.(11). The applicant has provided one handicap accessible parking space for the site which meets the minimum requirement.

#### No comment

g. HR 275-9.F. The applicant did not provide copies of easements or deeds as part of the package received for review. No easements are shown on the Existing Conditions plan or the proposed plans.

Please see attached deed from Hillsborough County Registry of Deeds.

2. Administrative Review Codes (HR 276)

a. HR 276-11.1.B.(6). The applicant should add the owner's signature to the plan set for the final approval copy.

Owner's signature will be added to the final plan prior to town signature.

b. HR 276-11.1.B.(9). The applicant has requested a waiver for the boundary survey of the site.

#### No comment

c. HR 276-11.1.B.(12)(c). The applicant has not provided any information regarding the 100-foot setback required on the south side of the site where there is an abutting residential use.

This was discussed with the Planning Board. They requested we include a waiver, which has been added to the Site Development Plan (Sheet 3), with the new waiver included in our letter to the Planner.

d. HR 276-11.1.B.(13) The applicant has shown proposed traffic signs and a freestanding sign within the site. The orientation of the 'No Left Turn' sign R3-2 at the entrance driveway appears to be facing the wrong direction.

The sign is shown correctly and as requested by the traffic engineer. The purpose is keep southbound traffic on Lowell Road from turning into the driveway. This decision was made to ease pressure from the Lowell Road-County Road intersection.

e. HR 276-11.1.B.(16). The applicant has not provided locations of driveways and parking ways within 200 feet of the site.

This information is shown on the 200-scale aerial view on the Title Page (Sheet 1), which meets the requirements of this section.

#### 3. Driveway Review Codes (HR 275-6.B/Chapter 193)

a. HR-193. We note that the Town is redesigning the intersection of Belknap Road and County Road, and that design may impact the proposed site exit driveway as one of the options for that redesigned intersection is to make County Road northbound a dead end street prior to Belknap Road. The applicant should coordinate with the Town Engineer regarding proposed improvements or confirm that this coordination has already taken place.

The proposed development and access was discussed with town staff on February 29, 2024 and on June 7, 2024. Based on discussion with the Town Engineer on November 1, 2024 and review of the current concepts for County Road, there will be no conflict.

b. HR 193.10.E. The applicant has provided information in the Traffic Study noting that adequate sight distance is provided for the proposed driveways.

#### No comment

c. HR 193.10.G. We note that the applicant has proposed keeping the two existing driveways for the site. We note that their exact locations have been adjusted but are in the general areas of the existing driveway aprons.

#### No comment

#### 4. Traffic (HR 275-9.B)

a. HR 275-9.B. Fuss & O'Neill will be providing comments on the review of the Traffic Impact Study under a separate review letter.

The review of the traffic Impact Study was received on October 29, 2024 - thank you.

#### 5. Utility Design/Conflicts

a. HR 275-9.E & 276-13. The applicant has proposed to connect the sewer service for the site to existing sewer stub on site.

#### No comment

b. HR 275-9.E & 276-13. The applicant is proposing a sewer service from the building with less than 2 feet of cover where it leaves the building and similar minimal cover where the sewer service pipe extends around the edge of the bioretention basin.

#### The sewer service pipe layout has been revised and now meets the minimum cover requirement.

c. Hudson Engineering Technical Guidelines Typical Details (ETGTD) Section 720.8.3 and Detail S-6. The applicant has proposed a cleanout at the sewer service change of direction. The applicant should confirm with the Town Engineer if a manhole is required due to commercial and/or industrial use.

## This was reviewed with the Town Engineer on November 1, 2024. A SMH has been added to where the new pipe connects to the existing, and a clean out shown where a bend in the pipe is required.

d. ETGTD Section 720.8.5. The applicant should note on the plans that floor drains, roof drains, sump pumps, or any other non-sanitary sewerage drain cannot be connected to the building's sewer service connection.

#### Note #14 was added to Site Grading and Utilities Plan (Sheet 4).

e. HR 275-9.E & 276-13. The applicant should review with the Town to confirm the availability of sufficient water flow to accommodate the site.

## Town records show existing water main in County Road to be 12". The Town Engineer confirmed suitable water was available during our November 1, 2024 meeting.

f. HR 275-9.E & 276-13. The applicant has noted that the proposed water service size shall be per the building design. The size of the existing service that is being tied into is not noted on the plans. If a larger size than existing is required to accommodate the proposed building use then the water service should be replaced to the water main, not connected to a smaller service stub. If the existing water service stub is being replaced the curb stop should be relocated to the property line per ETGTD detail W-19 or W-20.

# The water pipe layout has been revised to a 6" from the main in the road to allow for fire protection. A domestic pipe will branch off of this 6" pipe near the building. Note 11 on the Site Grading and Utilities Plan (Sheet 4) has been revised to state domestic water service to be sized per building design.

g. The proposed water service is shown directly within the proposed infiltration trench adjacent to the entrance driveway. The infiltration trench detail does not show a proposed depth, nor are there any notes within the water service trench detail regarding coordination between these two proposed site features.

#### See revised water pipe layout on the Site Grading and Utilities Plan (Sheet 4).

h. The applicant should update the Building Water Service detail notes to reference Town of Hudson requirements, not Town of Salem.

#### The note on Construction Details (Sheet 9) has been updated.

#### 6. Drainage Design/Stormwater Management (HR 275-9.A./Chapter 290)

a. HR 275-5.A.(5). The applicant has proposed peak flow increases within the 25-year and 50- year storm events. The applicant should review with the Town if such increases are reasonable and allowable and if a waiver is required.

The revised drainage design has a peak flow reduction for all storm events.

b. HR 275-5.A.(7). With the increases listed in the comment above, the applicant should review with the Town if flooding of downstream properties is a concern.

#### The revised drainage design has a peak flow reduction for all storm events.

c. HR 275-5.A.(9). The applicant should provide the BMP worksheets for the three proposed treatment practices.

#### BMP worksheets have been added to the drainage report as appendix F.

d. HR 275-5.A.(11). We note the existing conditions utilized takes into account a "previously razed residence" with driveway. Google maps illustrate this residence was razed sometime between September 2007 and August of 2011. This window of time represents nearly a 15-year timeframe, in which the property has established brush or field-grass type of growth for groundcover. The applicant should review with the Town if the pre-development existing conditions "residential paved/gravel/roofs" utilized properly models the ground cover conditions that have been in effect for approximately 15 years.

This was reviewed with the Town Engineer on November 1, 2024, who agreed with our approach. Per aerial imagery, the property was developed with a house and driveway as recently as 2010. Since 2010, there have been no offsite modifications that would cause this historic runoff to be an issue. As such, it is appropriate to model based on historic land coverage.

e. HR 275-5.A.(11). The applicant should review the use of a 5min Tc in the existing conditions. Measuring from PDF, it appears an approximate  $125'-150'\pm \log Tc$  time/path could be longer than 5min. This path flows diagonally from the southeast of the property to the northwest property line.

## All Tc values in the drainage analysis have been calculated and direct input of 5 minutes has been removed.

f. HR 275-5.A.(11). With the increase in runoff proposed in the 10-year and 25-year storm analysis, we note the existing and proposed conditions models site runoff as one analysis point. It appears the site produces a sheet flow discharge to the property to the north (TM 198-L146), as well as west toward the Lowell Rd/County Rd ROW. The applicant should provide additional stormwater calculations to illustrate that stormwater does not increase at property lines, which may adversely impact the property owner and roadways.

#### The revised drainage design has a peak flow reduction for all storm events.

g. HR 275-5.A.(11). The applicant should provide additional information as to the design intent of the Infiltration Trench Cross Section Detail upon Sheet 9. It is uncertain if the detail is intended to have filter fabric line the perimeter of the stone. It is recommended filter fabric be noted to ensure the lifespan of the drainage feature. Also please provide additional information on the "observation well, with screw top lid" illustrated, including but not limited to material, size, height below grade, height above grade, perforated/solid, etc. Is this vertical well port connected to a horizontal pipe element of the design? If so, additional information is required.

#### See revised Infiltration Trench Cross Section detail on Plan Sheet 8.

h. HR 275-5.A.(11). The applicant should provide the overflow outlet dimensions and elevation upon the plan set, with an overflow detail.

#### See Bioretention System Profile detail on Plan Sheet 8.

i. HR 275-5.A.(11). The applicant should provide additional information on the design of the infiltration trenches. It is noted that the HydroCAD utilizes a 3' deep flat/level infiltration trench for volume, while the design plans illustrate varying grade designs for both trenches. The sloped/varying grade will affect the infiltration ability, as well as the hydraulics, and modeling of storage capacity prior to infiltration or overflow.

See Infiltration Trench P1 Profile detail added to Plan Sheet 8. This clarifies the trench, which includes a stepped flat bottom for infiltration, and demonstrates that the required trench depth is provided along the full length of the trench. Note that trench depth has been increased to 4'.

#### Note that trench P2 has a slope of 2% or less, such that a stepped bottom is not required.

j. HR 275-5.A.(12). The applicant should provide the following:

i. A BMP location map in the I&M Manual. This will ensure both of the infiltration trenches and the basin are maintained as required.

#### A BMP location map has been included in the I&M Manual.

ii. Separate naming/labeling of the infiltration trenches, to ensure both are maintained.

Infiltration trenches have been separately labeled on the plans and the I&M Manual.

iii. Additional direction should include, but not be limited to the following: prepared by, party responsible during construction, party responsible after construction, timing (months/years) of inspections, depth of sediment cleaning requirements, recommended maintenance debris disposal methods, etc.

The I&M manual is for permanent, post construction stormwater practices. The prepared by, party responsible after construction, timing, and maintenance debris disposal have all been included.

Work during construction is addressed on the Erosion Control Details plan (sheet 7). Note #18 for the responsible party has been added to the plan. All other items are addressed in the notes on that plan.

iv. The I&M states to "contact a professional if loss of infiltration is observed", please note the intended professional.

The intended professional has been added to the I&M Manual.

k. The applicant will be required to comply with all provisions of the Town of Hudson's MS4 permit, including but not limited to annual reporting requirements, construction site stormwater runoff control, and record keeping requirements. The applicant has noted that the project has been designed to meet MS4 requirements.

#### Understood

1. Please note that this review was carried out in accordance with applicable regulations and standards in place in New Hampshire at this time. Note that conditions at the site, including average weather conditions, patterns and trends, and design storm characteristics, may change in the future. In addition, future changes in federal, state or local laws, rules or regulations, or in generally accepted scientific or industry information concerning environmental, atmospheric and geotechnical conditions and developments may affect the information and conclusions set forth in this review. In no way shall Fuss & O'Neill be liable for any of these changed conditions. Other than as described herein, no other investigation or analysis has been requested by the Client or performed by Fuss & O'Neill in preparing this review.

#### Understood

#### 7. Zoning (ZO 334)

a. ZO 334-17 & 334-21. The subject parcel is located within the Business (B) zoning district and the applicant has noted this on the plans. The proposed commercial use is allowed within the district.

#### No comment

b. ZO 334-35. The applicant has noted that no wetlands are present on site.

#### No comment

c. ZO 334-58. The applicant has shown a proposed freestanding sign location on the plans but has not included any size or detail information for that sign.

#### A sign detail has been added to the Site Development Plan (sheet 3).

d. ZO 334-83 and HR 218-4.E. The applicant has noted that the site is not located within a Food Hazard Area.

#### No comment

e. ZO 334 Attachment 4. The applicant has shown the proposed retaining wall partially within the 15foot side setback. The applicant should review with the Town if a retaining wall is considered a structure that needs to meet setback requirements, and if the wall needs to be moved within the building setback envelope or if a variance is required.

This was reviewed with Code Enforcement at the meeting on June 7, 2024, who determined that the retaining wall can be within the setbacks.

#### 8. Erosion Control/Wetland Impacts

a. The applicant should note that the Town of Hudson reserves the right to require any additional erosion control measures as needed.

#### This was added to the Erosion Control Details plan (Sheet 7) as note #17.

#### 9. Landscaping (HR 275-8.C.(7) & 276-11.1.B.(20)) and Lighting (HR 276-11.1.B.(14))

a. HR 275-8.C.(8). The applicant has proposed to leave existing vegetation between the site and the property to the south. The abutting site to the south appears to be a residential home and therefore would require screening from parking areas. The applicant should confirm that they believe the existing vegetation to be dense enough to meet the screening intent.

#### SFC believes that the existing vegetation is dense enough to meet the screening intent.

b. HR 276-11.1.B.(14). The applicant has provided a lighting plan. We note that at the north and south sides of the site, the plan shows light levels greater than 0.2 and up to 0.8 footcandles at the lot property lines. The applicant should review the design to reduce these amounts wherever practical. This would be especially important for the lot line to the south that abuts a residential use. We note that the proposed light pole fixtures have a 35' mounting height which seems excessive for the intended use and are likely contributing to the light trespass at the property lines.

The Lighting Plan (sheet 5) has been revised such that no lighting spills onto the residential property. The light pole height has also been changed to 20'.

c. The applicant should note the hours of operation for the site and the relationship of those hours to the site lighting.

Notes #5 and 6 have been added on Lighting Plan (Sheet 5).

d. The applicant has not proposed any landscaping on site.

Hudson Site Plan Review regulations section 275-8.c(7)(e) states that landscaping requirements do not apply to parking areas consisting of a single access lane. See note #17 on the Site Development Plan (sheet 3).

10. State and Local Permits (HR 275-9.G.)

a. HR 275-9.G. The applicant should list the required permits and their status on the plan set.

Required permits and their status has been added to the Title Page (sheet 1).

b. HR 275-9.G. The applicant should provide copies of any applicable Town, State or Federal approvals or permits.

There are no other required Town, State or Federal land use approvals or permits.

c. Additional local and state permitting may be required.

There are no other required Town, State or Federal land use approvals or permits.

<u>11. Other</u>

a. The applicant should note the need for the retaining wall design to be completed and stamped by a NH Professional Engineer and submitted to the Town for review.

Note #20 has been added to the Site Development Plan (sheet 3).

b. The site appears to be missing lot monumentation based on the Existing Conditions Plan. The applicant should review the need to add monumentation to the site.

We do not propose adding missing monumentation.

c. The applicant should include a pavement patch detail for the water service connection within Lowell/County Road.

Pavement Repair Detail has been added to Construction Details (sheet 10).

Sincerely, *SFC ENGINEERING PARTNERSHIP, INC.* 

NO Daniel M. Flores, P.E.

Daniel M. Flores, P.E. Vice President - Civil Engineering

Attachment "G"

50 Commercial Street, Suite 2S

Manchester, NH 03101

603.668.8223

www.fando.com

October 29, 2024

Mr. Jay Minkarah Acting Town Planner Town of Hudson 12 School Street Hudson, NH 03051

Re: Town of Hudson Planning Board Review Inside Out Painting Site Plan, 100 Lowell Road Tax Map 198 Lot 147; Acct. #1350-180 Reference No. 20030249.243

Dear Mr. Minkarah:

Fuss & O'Neill, Inc. has reviewed the Traffic Impact and Access Study prepared by VAI dated October 1, 2024, for the proposed commercial building to be located at 100 Lowell Road (NH Route 3A) in Hudson. Please refer to our previous letter dated October 23, 2024, for our comments related to the review of the site plans and stormwater management report.

FUSS &

The project proposes the development of 4,500 square feet (sf) of commercial buildings on the approximately 0.8 acre lot, which is currently bounded by the Jette and Sousa baseball/softball fields and associated parking area and appurtenances to the north and east of the lot, NH Route 3A (Lowell Road) and a commercial property to the south, and NH Route 3A and County Road to the west. Access and egress to the site will be provided by two driveways - one for the one way entrance into the site, and the other driveway which will be a right turn exit only onto County Road.

The procedures that the VAI Consultants' report uses are reasonable with the appropriate ITE generation rates used for a commercial building with the Land Use Code (LUC) 180, Specialty Trade Contractor. This data shows an estimated generation of trips to the volume of 44 during the average weekday, 7 during the weekday morning peak hour, and 7 during the weekday evening peak hour.

The intersection analysis in the report shows that the westbound intersection approach of County Road at NH Route 3A has a level of service (LOS) of F for the No-Build and the Build for all years analyzed. The site driveway layout restricts traffic leaving the site to use the westbound County Road approach, by making the exit from the site a right only. This eliminates trips from the site impacting the westbound intersection approach but distributes all trips through the neighborhood area of County Road towards the Belknap Road intersection and through until County Road meets NH Route 3A to the north.

The report acknowledges the Town of Hudson and NHDOT future roadway project which intends to extend Belknap Roadway to NH Route 3A, which would significantly improve the intersection operations of NH Route 3A and County Road. However, it is our understanding that one consideration for this project is to make the section of County Road south of Belknap Road a dead-end street in the future. The applicant should coordinate with the Town of Hudson and the NHDOT regarding this potential change to the County Road traffic pattern as this may require redesigning the site driveways. Given the potential future project a consolidated site driveway off County Road might make more sense, removing the entrance driveway off of NH Route 3, which is currently the only entrance into the site and must be accessed by traveling northbound on NH Route 3A.

Mr. Jay Minkarah October 29, 2024 Page 2 of 2



Overall, we concur with the VAI report's conclusion that the proposed development will have no significant impact on the NH Route 3A Highway corridor. However, there is significant concern that the site driveway layout could require redesign due to the Belknap Road extension project.

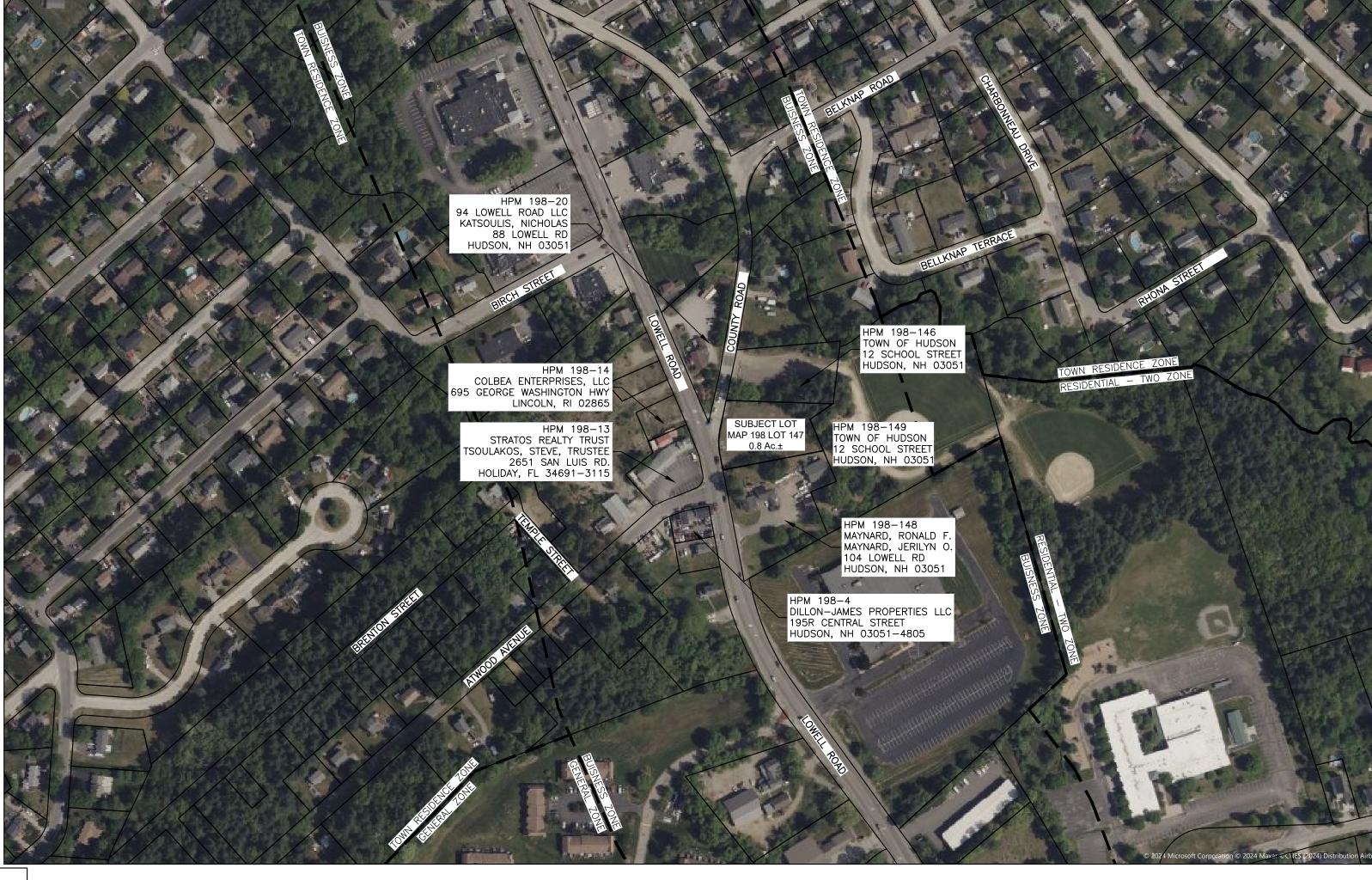
Please feel free to call if you have any questions.

Very truly yours,

Athleh

Steven W. Reichert, P.E.

SWR:


Enclosure

cc: Town of Hudson Engineering Division – File SFC Engineering – dflores@sfceng.com

# LEGEND

_	EXISTING	PROPOSED	
EDGE OF GRAVEL			
EDGE OF PAVEMENT			
STONE WALL			
REBAR	0		
BOUND		•	
BOLLARD		•	
BUILDING SETBACK LINE			
FLOOD PLAIN BOUNDARY			
	TBM		
TEMPORARY BENCH MARK	·/ 	282	
CONTOURS	V 152.65	152.85	
	X 152.65	-152.85	
	 ଜାରାତ		
SCS SOIL IDENTIFICATION SYMBOL	43B 99004		
HISS SOIL IDENTIFICATION SYMBOL	238BH	\. <del>~</del>	
EVERGREEN SHRUB	7		
	0		
CHAIN LINK FENCE	0		
SILT SOCK		SS SS	
OVERHEAD UTILITIES	O/E&T		
UNDERGROUND UTILITIES		— — PU/E&T— —	
SANITARY SEWER	S	PS	
WATER LINE	W		
GAS LINE	G	PG	
RIPRAP	,GV,	67 167 167 167 167	
GAS VALVE	23	•	
SEWER MANHOLE	S	9	
CLEANOUT	.WV.	© ₩	
WATER GATE	×S o	₩ <u>*</u> \$0	
WATER SHUT OFF	#So	Ň	
UTILITY POLE	-0-		
UTILITY POLE W/ STREET LIGHT	-0-		
GUY WIRE	$\downarrow$		
GUY POLE	-0	P	
LIGHT POLE	¢	-	
WALL LIGHT		H	
TRANSFORMER	TP		
TEST PIT			
PERCOLATION TEST	$\bigcirc$		
DRAINAGE FLOW ARROWS		2% ⇒	
TRAFFIC FLOW ARROWS		→	
ACCESSIBLE PARKING		Ê.	
DUMPSTER			
SIGN	<del>- 0 -</del>	<b></b>	
	OWNER OF RE		
	100 LOWELL RD LLC		
	122 LOWELL ROAD, SU	ITE 3	
	HUDSON, NH 03507		
		-	
	SIGNATURE		
	APPROVED BY HUDSON, NH PLANNING BOARD		PUF
			FU

# Site Development Plans Commercial Development Inside Out Painting and Remodeling 100 Lowell Road Hudson, NH



	Y HUDSON, NH IG BOARD	PURSUANT TO THE
DATE OF MEE	ETING:	SITE REVIEW REGULATIONS OF THE HUDSON
SIGNATURE	SIGNATURE	PLANNING BOARD, THE SITE PLAN APPROVAL
SIGNATURE DATE:	SIGNATURE DATE:	GRANTED HEREIN EXPIRES ONE YEAR FROM DATE OF
SITE PLANS ARE VALID FOR TWO YEARS FROM THE	DATE OF PLANNING BOARD MEETING DATE AT WHICH	APPROVAL.

THE PLAN RECIEVES FINAL APPROVAL

THIS PLAN SET SUBMITTED FOR PERMITTING AND CONSTRUCTION ESTIMATES. THIS PLAN SET SHALL NOT BE USED FOR CONSTRUCTION.





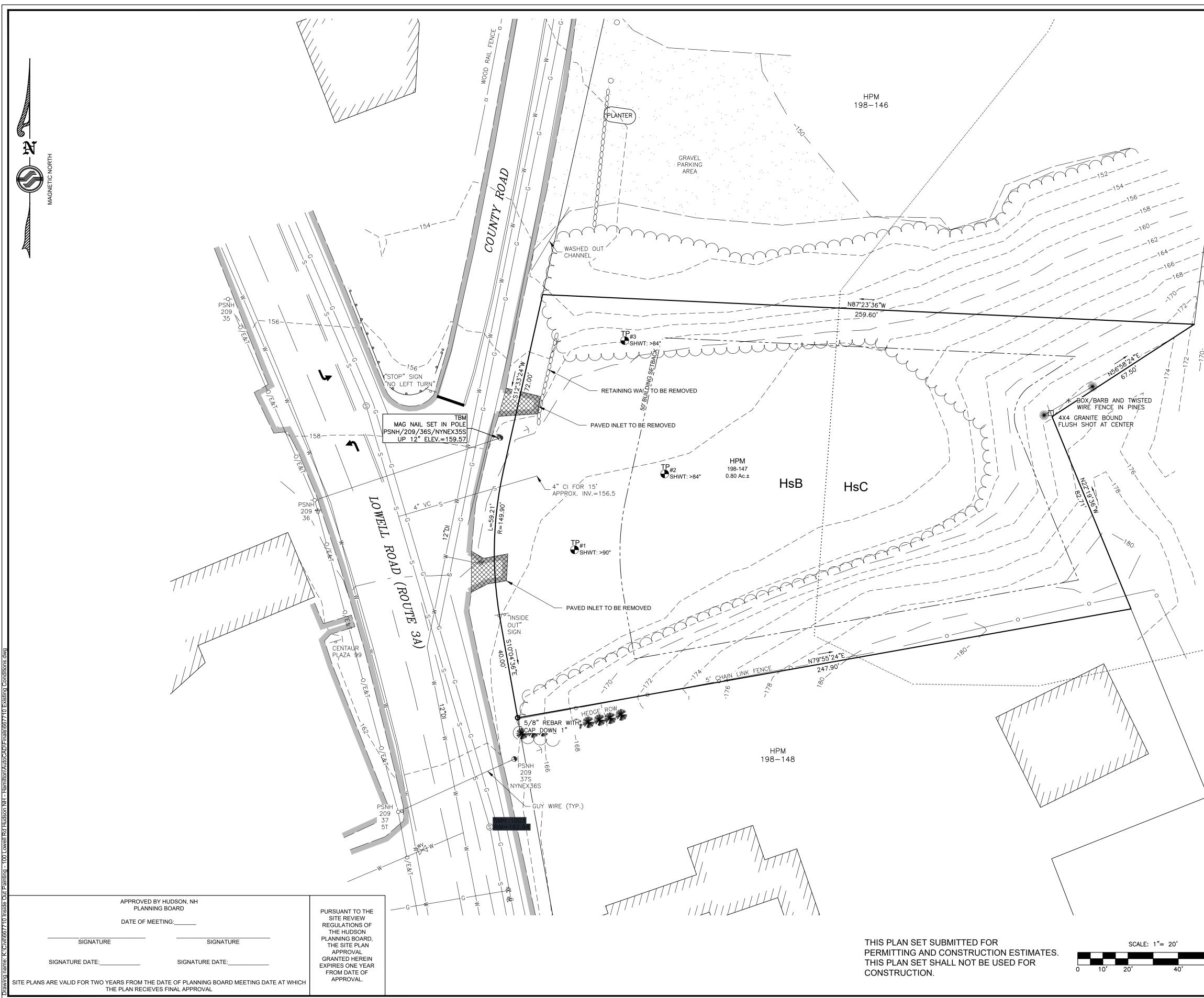
SCALE: 1"= 200'



# NOTE

- 1. THE PURPOSE OF THIS PLAN IS TO SHOW A GENERAL OVERVIEW OF HUDSON TAX MAP 198 LOT 147
- 2. THIS PLAN WAS PREPARED FROM THE PLANS OF REFERENCE AND THE ASSESSORS MAPS OF THE TOWN OF HUDSON.




### SHEET INDEX

SHEET NUMBER	DESCRIPTION	REVISION NUMBER	DATE
1	TITLE SHEET	1	1/7/2025
2	EXISTING CONDITIONS PLAN		10/2/2024
3	SITE DEVELOPMENT PLAN	1	1/7/2025
4	SITE GRADING & UTILITIES PLAN	1	1/7/2025
5	LIGHTING PLAN	1	1/7/2025
6	FIRE PROTECTION PLAN	1	1/7/2025
7	EROSION CONTROL DETAILS	1	1/7/2025
8	CONSTRUCTION DETAILS	1	1/7/2025
9	CONSTRUCTION DETAILS	1	1/7/2025
10	CONSTRUCTION DETAILS		1/7/2025

# REQUIRED PERMITS

HUDSON SITE PLAN APPROVAL: PENDING

1	Addressed F&O Comments		1/7/2025		
No.	Revision		Date		
Desigr	ned by: BRC Drawn by: BRC	ed by: BRC Drawn by: BRC Che			
	Title Sheet Commercial Develop Out Painting and R 100 Lowell Road Hudson, NH Assessors Map 198 Lot	emodeli I	ng		
Windham, New Hampshire Portland, Maine Sheet 1 of 10	ENGINEERIN	G www	3) 647-8700 w.sfceng.com		
	Scale: 1" = 200'	Da	ate: 10/2/2024		
DANIEL M. FLORES No. 15761	Prepared for: 100 Lowell Rd LLC 122 Lowell Road, Suite 3 Hudson, NH 03501	Hudson Plar Approval	nning Board		
IN TOWAL COMMUNICATION	Zoning Classifica	tion: B - Busir	IESS		

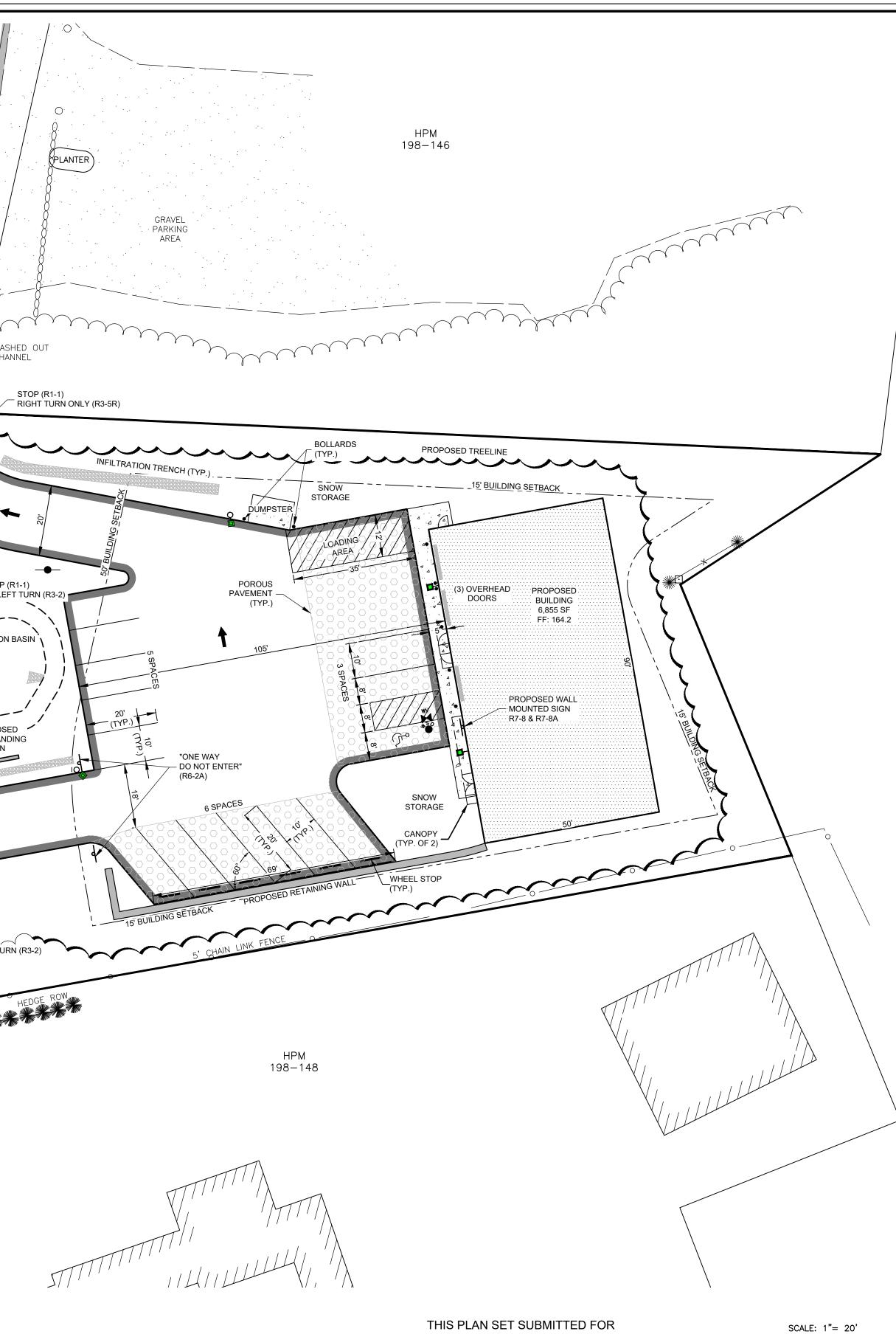


# PLANS OF REFERENCE

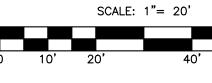
1. "PLAN OF LAND, FELIX MAYNARD" PREPARED FOR: FELIX MAYNARD, PREPARED BY: ROLAND GIROUARD, DATED: OCT. 1969, RECORDED IN THE HILLSBOROUGH COUNTY REGISTRY OF DEEDS AS PLAN #4281 PLAN REFERENCE HUDSON, HILLSBOROUGH COUNTY REGISTRY OF DEEDS

### NOTES

- 1. THE PURPOSE OF THIS PLAN IS TO DEPICT THE EXISTING CONDITIONS OF HUDSON PROPERTY MAP 198 LOT 147 CONSISTING OF 0.80 Ac.±
- 2. THE OWNER OF RECORD: 100 LOWELL ROAD LLC DEED REFERENCE BOOK 9752 PAGE 1966, HILLSBOROUGH COUNTY REGISTRY OF DEEDS
- 3. THIS PLAN SHOWS CONDITIONS AS DEFINED BY INSTRUMENT FIELD SURVEY ON 3/26/2024. THIS PLAN DOES NOT REPRESENT A BOUNDARY SURVEY BY SFC ENGINEERING PARTNERSHIP INC. THE PROPERTY BOUNDARY SHOWN IS BASED ON MONUMENTATION FOUND DURING THE FIELD SURVEY AND PLANS OF REFERENCE.
- BENCHMARK: CHC 900B SURVEY GRADE GPS VERTICAL DATUM: NAVD 88 (GEOID18) HORIZONTAL DATUM: NAD 83


5	ZONING DISTRICT:	B - BUSINESS
0.		
	MINIMUM LOT SIZE:	30,000 SF
	MINIMUM FRONTAGE:	150'
	FRONT SETBACK:	50'
	SIDE SETBACK:	15'
	REAR SETBACK:	15'

- 6. NO PORTION OF THIS PARCEL IS LOCATED WITHIN A FLOOD HAZARD AREA AS INTERPRETED FROM THE FLOOD INSURANCE RATE MAP FOR THE TOWN OF HUDSON, MAP NUMBER 33011C0518D. EFFECTIVE DATE: SEPTEMBER 25, 2009 PREPARED BY THE FEDERAL EMERGENCY MANAGEMENT AGENCY.
- ALL UNDERGROUND UTILITIES, IF SHOWN, ARE APPROXIMATE. CONTRACTOR TO CONTACT DIGSAFE 72 HOURS PRIOR TO CONSTRUCTION.
- 8. THE SITE IS SERVED BY MUNICIPAL WATER AND SEWER, OVERHEAD ELECTRIC, AND UNDERGROUND GAS.
- 9. SEWER UTILITY SHOWN FROM TOWN GIS AND SEWER SERVICE RECORDS.
- 10. WATER UTILITY SHOWN FROM TOWN GIS, WATER SERVICE RECORDS AND SURVEY LOCATIONS.
- 11. GAS UTILITY SHOWN FROM TOWN GIS AND SURVEY LOCATIONS.
- 12. THE SEWER SERVICE WAS VIEWED BY SFC AND HUDSON DPW ON AUGUST 29, 2024. THE PIPE SECTION PAST THE PROPERTY LINE TO THE SEWER MAIN IN THE ROAD WAS FOUND TO BE CLEAR AND ADEQUATE FOR SERVICE.
- 13. PER NRCS WEB SOIL SURVEY, SOILS INCLUDE HSB HINCKLEY LOAMY SAND, 8 TO 15 PERCENT SLOPES.
- 14. TEST PITS WERE OBSERVED BY SFC ON 8/29/2024


No.	Revision		Date	
Desig	ned by: JRB	Drawn by: BRC	Checked by: DMF	
Existing Conditions Plan Commercial Development Inside Out Painting and Remodeling 100 Lowell Road Hudson, NH Assessors Map 198 Lot 147 Windham, New Hampshire				
Portland, Maine	ENGI	NEERIN	G www.sfceng.com	
Sheet 2 of 10	S	cale: 1" = 20'	Date: 10/2/2024	
DANIEL NEW HAMS OTHER HORES No. 15761 HORES No. 15761	Prepared for: 100 Lowell R 122 Lowell R Hudson, NH	oad LLC oad, Suite 3	Hudson Planning Board Approval	
CNAL STATISTIC		Zoning Classifica	tion: B - Business	

SFC ENGINEERING PARTNERSHIP INC. 202

DU NOT ENTER ILST INDE TETE SEE SIGN DETAIL ON CONSTRUCTION DETAILS PLAN SHEETS PROPOSED SOLE MORE MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANA MARAMANANA MARAMANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANA MARAMANANANA MARAMANANANANANANANANANANANANANANANANANA				
APPROVED BY HUDSON, NH PLANNING BOARD DATE OF MEETING: 			DO NOT ENTER (R5-1)	TFOR LINDO TO UNA STOP STOP NO LET TU SNOW STORAGE NO LEFT TU
	APPROVED BY HUDSON, NH PLANNING BOARD DATE OF MEETING:	SITE REVIEW REGULATIONS OF THE HUDSON PLANNING BOARD, THE SITE PLAN APPROVAL GRANTED HEREIN EXPIRES ONE YEAR FROM DATE OF		



THIS PLAN SET SUBMITTED FOR PERMITTING AND CONSTRUCTION ESTIMATES. THIS PLAN SET SHALL NOT BE USED FOR CONSTRUCTION.



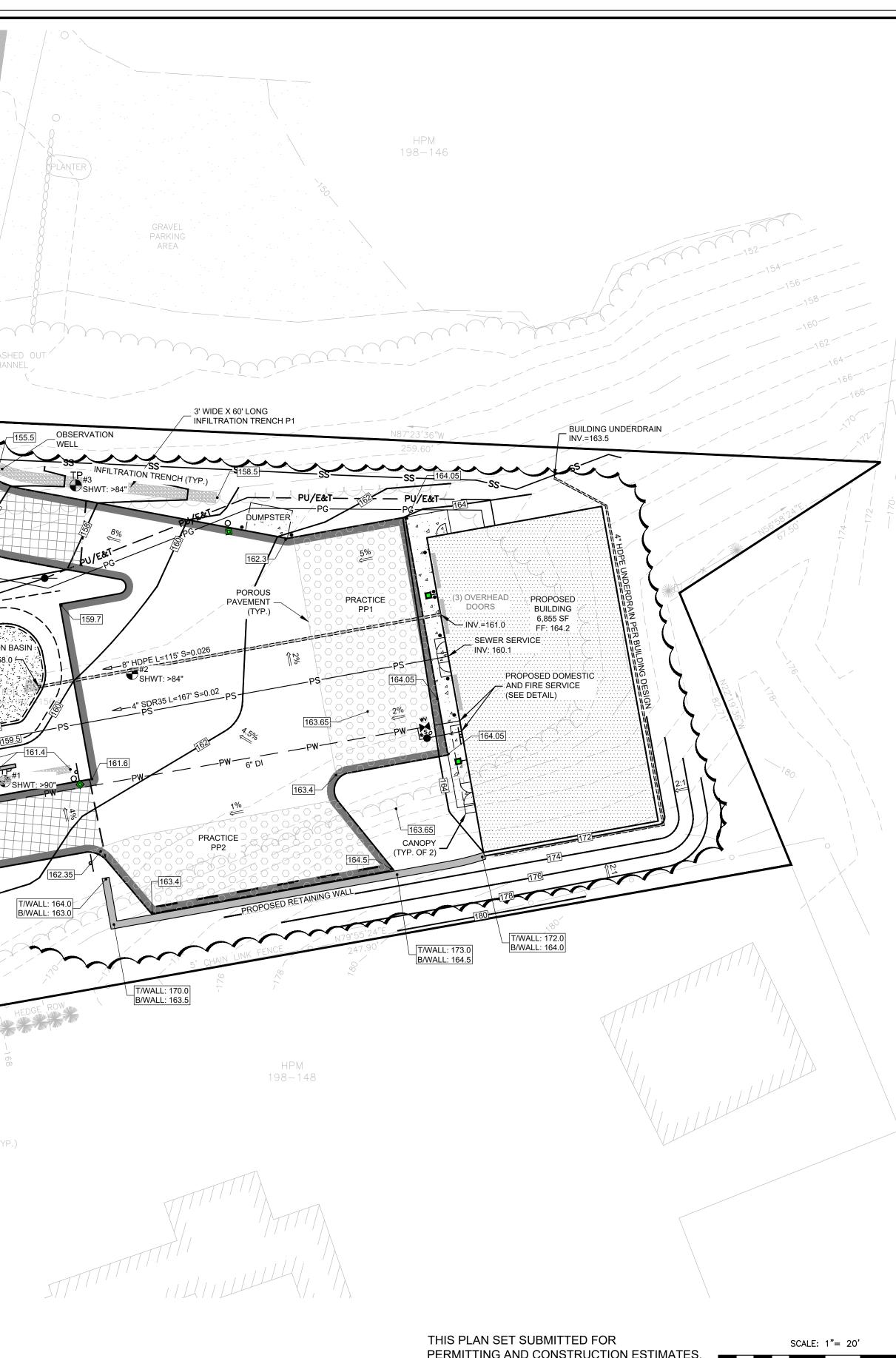
# NOTES

- 1. THE PURPOSE OF THIS PLAN IS TO DEPICT THE DEVELOPMENT OF A COMMERCIAL BUILDING ON HUDSON
- PROPERTY MAP 198 LOT 147 CONSISTING OF 0.80 Ac.
- 2. THE PROPOSED DEVELOPMENT INCLUDES: A. NEW COMMERCIAL BUILDING TO BE OCCUPIED BY ONE TENANT
- B. PARKING AND MANEUVERING SPACE C. THREE OVERHEAD DOORS
- D. DUMPSTER WITH ENCLOSURE
- E. RETAINING WALL
- F. PROPERTY TO BE SERVED BY RIGHT IN/RIGHT OUT DRIVEWAYS
- G. CONNECTION TO MUNICIPAL UTILITIES (WATER AND SEWER) AND NATURAL GAS H. RELOCATION OF OVERHEAD ELECTRIC, THEN UNDERGROUND TO BUILDING
- I. NEW FREESTANDING SIGN

3. ZONING DISTRICT:	B - BUSINESS	
DIMENSIONAL REQUIREMENT	<u>REQUIRED</u>	PROVIDED
MINIMUM LOT SIZE:	0.69 Ac.± (30,000 SQ.FT.)	0.8 Ac.± (34,848 SQ.FT.)
MINIMUM FRONTAGE:	150'	171'
MAXIMUM BUILDING HEIGHT	35'	35'
FRONT SETBACK:	50'	135'
SIDE SETBACK:	15'	16'
REAR SETBACK:	15'	17'
OPEN SPACE:	13,939 SF	18,254 SF

- 4. TOTAL LAND AREA TO BE DISTRIBUTED WITH THIS PROJECT: 29,570 SF
- 5. TOTAL PAVEMENT ON SITE AFTER DEVELOPMENT: 11,770 SF, OF WHICH 3,724 SF POROUS
- THE PROPOSED BUILDING WILL BE SERVED BY MUNICIPAL WATER AND SEWER AND UNDERGROUND GAS AND ELECTRIC.
- 7. ALL WORK IS TO CONFORM TO THE TOWN OF HUDSON STANDARDS.
- PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL VERIFY THAT THEY HAVE THE MOST RECENT SET OF PLANS. ALL WORK SHALL BE PERFORMED USING THE COMPLETE SET OF PLANS AS SOME ITEMS ARE NOT SHOWN ON EVERY SHEET.
- 9. THE ENGINEER SHALL BE NOTIFIED IMMEDIATELY IF CONDITIONS ARE FOUND THAT DO NOT MATCH WHAT IS SHOWN ON THESE PLANS.
- 10. ALL DIMENSIONS ARE TO FACE OF CURB UNLESS OTHERWISE NOTED.
- 11. EACH ACCESSIBLE SPACE SHALL BE MARKED WITH AN UPRIGHT SIGN.
- 12. ALL PARKING SPACES SHALL BE STRIPED WITH WHITE TRAFFIC PAINT WITH A 4" MINIMUM LINE WIDTH.
- 13. ALL DISTURBED AREAS SHALL BE DRESSED WITH 4" OF LOAM AND SEED UNLESS OTHERWISE SPECIFIED.
- 14. ALL SITE AND CONSTRUCTION PLANS MAY BE REVIEWED BY A THIRD PARTY CONSULTANT OF THE TOWNS CHOOSING. ALL COSTS ASSOCIATED WITH THE THIRD PARTY REVIEWS AND INSPECTION SHALL BE PAID BY THE DEVELOPER.
- 15. NOTE REMOVED.
- 16. LOCATION OF A SIGN MEETING ZONING REQUIREMENTS IS SHOWN. ALL SIGNS ARE SUBJECT TO APPROVAL BY THE HUDSON ZONING ADMINISTRATOR PRIOR TO INSTALLATION THEREOF.
- 17. HUDSON SITE PLAN REVIEW REGULATIONS SECTION 275-8.C(7)(e) THAT STATES THAT LANDSCAPING REQUIREMENTS DO NOT APPLY TO PARKING AREAS CONSISTING OF A SINGLE ACCESS LANE.
- 18. PARKING REQUIREMENTS REQUIRED: 6,855 SF / 300 SF = 23 SPACES PROVIDED: 14, OF WHICH 1 IS VAN ACCESSIBLE (SEE WAIVER REQUEST)
- 19. THIS PLAN INCLUDES A 35' LONG LOADING AREA. THE HUDSON SITE PLAN REGULATIONS (275-8.C(6)(b)) ALLOWS FOR A 35' LOADING LENGTH WHEN DEMONSTRATED DELIVERY IS BY A SHORTER TRUCK. THE OWNERS WILL HAVE DELIVERIES VIA BOX TRUCKS AND OTHER TRUCKS WHERE 35' LOADING LENGTH IS ADEQUATE. (SEE WAIVER REQUEST)
- 20. RETAINING WALL DESIGN IS TO BE COMPLETED AND STAMPED BY A NH LICENSED PROFESSIONAL ENGINEER AND SUBMITTED TO THE TOWN FOR REVIEW.
- 21. THIS PLAN INCLUDES USE OF POROUS PAVEMENT. LANDOWNER IS RESPONSIBLE FOR ADHERING TO THE PROJECT OPERATION AND MAINTENANCE MANUAL.
- 22. THIS DEVELOPMENT HAS BEEN DESIGNED FOR A SINGLE TENANT.

# WAIVER REQUESTS


- 193-10.G FOR 2 DRIVEWAY CURB CUTS
   275-8.C(2)(m) FOR PARKING QUANTITY
- 3. 275-8.C(6)(b) FOR LOADING SPACE SIZE
- 4. 276-11.1.B(9) THAT REQUIRES ERROR OF CLOSURE PREPARED BY A NH LICENSED LAND SURVEYOR
- 5. 276-11.1.B.(12)(c) 100' RESIDENTIAL SETBACK

1	Addressed F&	O Comments		1/7/2025
No.	Revision			Date
Desi	gned by: JRB	Drawn by: BRC		Checked by: DMF
	Commerc e Out Pain 100 I Hu Assessor	evelopment Plan tial Develop nting and R Lowell Road dson, NH s Map 198 Lot SFC N E E R I N	ment emodel 147	<b>ing</b> 603) 647-8700 vw.sfceng.com
Sheet 3 of 10	S	cale: 1" = 20'	[	Date: 10/2/2024
PROTOSONSER	Prepared for: 100 Lowell Ro 122 Lowell Ro Hudson, NH (	oad, Suite 3	Hudson Pla Approval	anning Board
SONAL EL MIN		iness		

Drawing: 667710 Site Development Layout: Site Development - 3

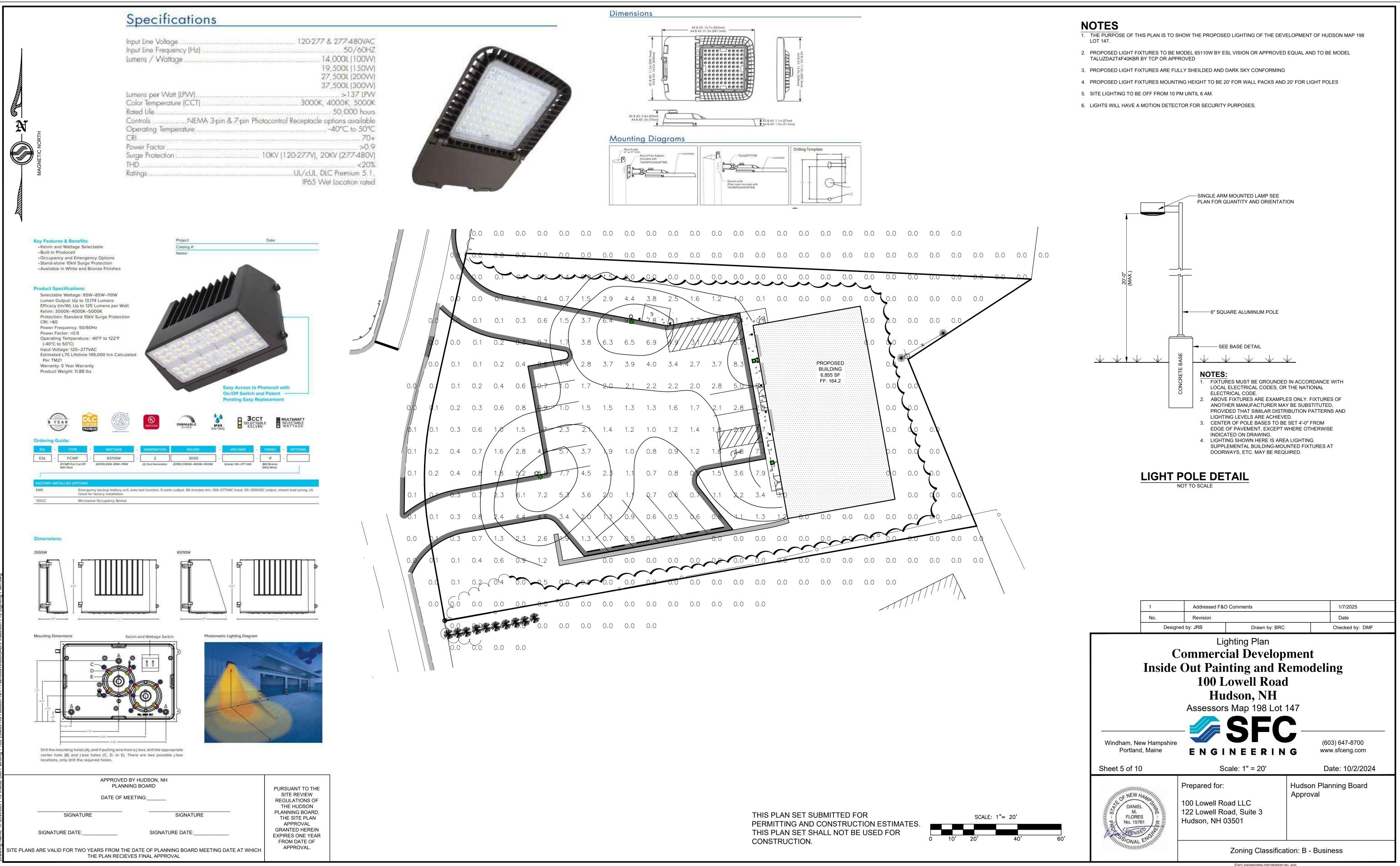
G PARTNERSHIP INC. 202

	M MOOD RAIL FENCE
WAGNETIC NORTH	THOU INTO THE REAL OF THE REAL
	155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 155.2 15
	AG NAIL SET IN POLE PSNH/209/36S/NYNEX35S UP 12" ELEV.=159.57 TIE INTO EXISTING 4" VC SERVICE CAST IRON SECTION TO BE REMOVED OF AN NOV = NINV IN: 156.3 INV OUT: 156.2 PSNH 209 36 CONTRACTOR TO PROVIDE MINIMUM SIZE PAVEMENT CUT FOR UTILITY WORK. DBSERVATION WELL
	2' WIDE X 55' LONG INFILTRATION TRENCH P2 TEMPORARY CONSTRUCTION EXIT AT EACH DRIVEWAY CONSTRUCTION EXIT AT EACH DRIVEWAY
APPROVED BY HUDSON, NH PLANNING BOARD DATE OF MEETING: 	(SEE DETAIL SHEET) (SEE D
APPROVED BY HUDSON, NH PLANNING BOARD DATE OF MEETING: GIGNATURE DATE:SIGNATURE DATE:	PURSUANT TO THE SITE REVIEW REGULATIONS OF THE HUDSON PLANNING BOARD, THE SITE PLAN APPROVAL GRANTED HEREIN

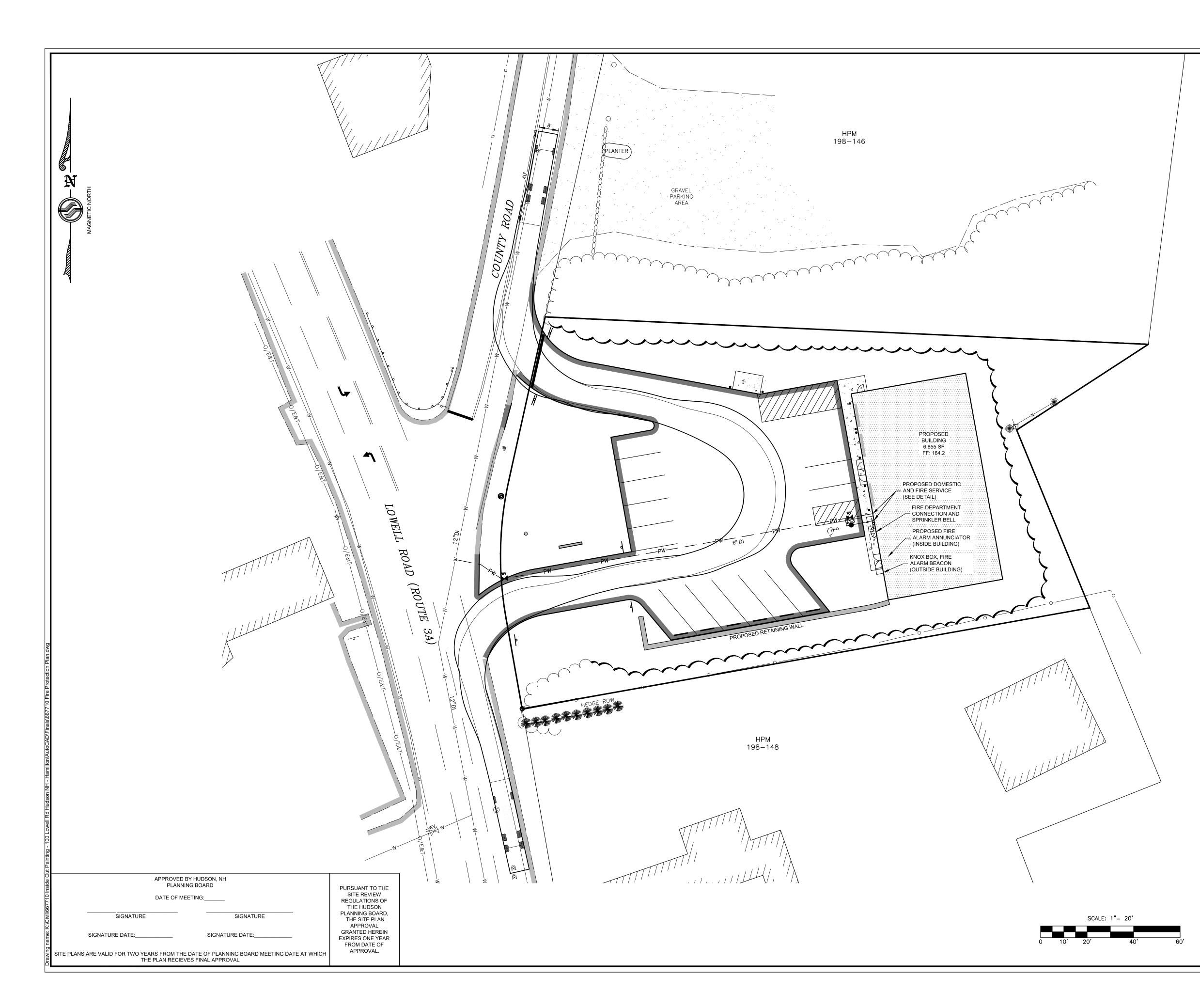


PERMITTING AND CONSTRUCTION ESTIMATES. THIS PLAN SET SHALL NOT BE USED FOR CONSTRUCTION.




# NOTES

- 1. THE PURPOSE OF THIS PLAN IS TO SHOW THE PROPOSED GRADING AND UTILITIES FOR DEVELOPMENT OF HUDSON PROPERTY MAP 198 LOT 147.
- 2. ALL WORK IS TO BE PERFORMED IN ACCORDANCE WITH TOWN OF HUDSON STANDARDS.
- SFC ENGINEERING PARTNERSHIP, INC. DOES NOT WARRANT THE LOCATION OR ELEVATION OF THE EXISTING UTILITIES OR THAT ALL ARE SHOWN. CONTRACTOR SHALL BE RESPONSIBLE FOR CONTACTING DIG SAFE (1-800-394-7233) AT LEAST 72 HOURS PRIOR TO CONSTRUCTION IN ACCORDANCE WITH STATE LAW.
- CONTRACTOR SHALL VERIFY TEMPORARY BENCH MARK (TBM) ELEVATIONS PRIOR TO CONSTRUCTION.
   BENCHMARK: CHC 900B SURVEY GRADE GPS
- VERTICAL DATUM: NAVD 88 (GEOID18) HORIZONTAL DATUM: NAD 83
- 6. ALL SPOT GRADES ARE AT BOTTOM OF CURB UNLESS OTHERWISE SPECIFIED.
- 7. ALL DISTURBED AREAS SHALL BE DRESSED WITH 4" OF LOAM AND SEED UNLESS OTHERWISE SPECIFIED.
- 8. ALL 2:1 SLOPES SHALL BE STABILIZED WITH JUTE MATTING OR EROSION CONTROL BLANKET IMMEDIATELY FOLLOWING FINAL GRADING
- 9. RETAINING WALL DESIGN SHALL BE STAMPED BY NH PE AND SUBMITTED TO TOWN FOR REVIEW PRIOR TO CONSTRUCTION.
- 10. THE CONTRACTOR IS RESPONSIBLE FOR PROVIDING AND MAINTAINING EROSION CONTROL MEASURES THROUGHOUT CONSTRUCTION PER NH STORMWATER MANUAL. EROSION CONTROL MEASURES SHALL BE REMOVED AND PROPERLY DISPOSED OF ONCE THE SITE IS STABLE. THE TOWN OF HUDSON RESERVES THE RIGHT TO REQUIRE ANY ADDITIONAL EROSION CONTROL MEASURES AS NEEDED.
- 11. DOMESTIC WATER SERVICE SIZE PER BUILDING DESIGN.
- 12. ELECTRIC SERVICE TO BE INSTALLED IN CONFORMANCE WITH UTILITY PROVIDER REQUIREMENTS.
- 13. ANTICIPATED SEWER LOADING: BASED ON OFFICE USE WITH NO CAFETERIA OR SHOWERS 7 EMPLOYEES X 10 GPD = 70 GPD
- 14. FLOOR DRAINS, ROOF DRAINS, SUMP PUMPS OR ANY OTHER NON-SANITARY SEWERAGE DRAIN CANNOT BE CONNECTED TO THE BUILDING'S SEWER SERVICE CONNECTION.
- 15. CONTRACTOR TO COORDINATE THE SEWER INVERT OUT AT BUILDING TO PROVIDE MINIMUM 2% SLOPE TO THE NEW SMH. COVER OVER PIPE TO BE 2' MINIMUM. CONTRACTOR TO CONFIRM EXISTING PIPE INVERT AT PROPOSED SMH PRIOR TO FOUNDATION WORK.


1	Addressed F&	O Comments		1/7/2025
No.	Revision	Revision		Date
Desig	Designed by: JRB Drawn by: BRC			Checked by: DMF
Site Grading & Utilities Plan <b>Commercial Development</b> <b>Inside Out Painting and Remodeling</b> <b>100 Lowell Road</b> <b>Hudson, NH</b> Assessors Map 198 Lot 147 Windham, New Hampshire Portland, Maine <b>SFC</b> <b>ENGINEERING</b> (603) 647-8700 www.sfceng.com				(603) 647-8700
Sheet 4 of 10		cale: 1" = 20'		
DANIEL M. FLORES No. 15761	Prepared for: 100 Lowell Ro 122 Lowell Ro Hudson, NH (	oad LLC oad, Suite 3	Hudson Approva	Planning Board I
ONAL STREET		Zoning Classifica	tion: B - B	usiness

Drawing: 667710 Site Grading and Utilities Layout: Site Grading & Utilities - 4

©SFC ENGINEERING PARTNERSHIP INC. 2025



Drawing: 667710 Lighting Plan Layout: Lighting Plan - 5



# NOTES

THE PURPOSE OF THIS PLAN IS TO AID THE FIRE DEPARTMENT REVIEWER IN DETERMINING COMPLIANCE WITH MAJOR FIRE CODE REQUIREMENTS AS THEY RELATE TO SITE PLANNING. THIS PLAN IS NOT INTENDED TO SPECIFY ANY SYSTEMS DESIGNS OR MATERIALS BUT RATHER IT:

- 1. IDENTIFIES FIRE DEPARTMENT ACCESS REQUIREMENTS. MANEUVERING SHOWN BASED ON 100 FT LADDER TRUCK.
- 2. SPECIFIES INTENT TO PROVIDE SPRINKLER AND FIRE ALARM SYSTEMS.
- 3. SHOWS PROPOSED LOCATIONS OF KNOX BOX, FIRE ALARM ANNUNCIATOR, FIRE ALARM BEACON, FIRE DEPARTMENT CONNECTION, AND SPRINKLER BELL (SUBJECT TO FINAL APPROVAL IN PERMIT PLANS).
- CALCULATE PRELIMINARY FIRE FLOW REQUIREMENTS BASED UPON ASSUMED TYPE IIB CONSTRUCTION (SPRINKLERED FLOW 600 GPM W/QR OR UNSPRINKLERED 1750 GPM).
- 5. IDENTIFY NEAREST HYDRANT.

# **FIRE PROTECTION NOTES**

- 1. FIRE DEPARTMENT ACCESS ROADS ARE TO BE PROVIDED AND MAINTAINED IN ACCORDANCE WITH NFPA 1, CHAPTER 18.
- FIRE DEPARTMENT ACCESS ROADS WILL EXTEND TO WITHIN 50' OF AT LEAST ONE EXTERIOR DOOR THAT CAN BE OPENED FROM THE OUTSIDE AND PROVIDES ACCESS TO THE INTERIOR OF THE BUILDING (NFPA 1 SECTION 18.2.3.2.1)
- 3. FIRE DEPARTMENT ACCESS ROADS ARE TO BE PROVIDED SUCH THAT ANY PORTION OF THE FACILITY OR ANY PORTION OF AN EXTERIOR WALL OF THE FIRST STORY OF THE BUILDING IS LOCATED NOT MORE THAN 150' FROM ACCESS ROADS AS MEASURED BY AN APPROVED ROUTE AROUND THE EXTERIOR OF THE BUILDING OR FACILITY (DIMENSION IS INCREASED TO 450' WHERE THE BUILDING IS PROVIDED WITH AN NFPA 13 COMPLIANT SYSTEM).
- 4. ACCESS ROAD DIMENSIONS:
- A. MINIMUM UNOBSTRUCTED WIDTH: 20' (NFPA 1 SECTION 18.2.3.5.1.1)
- B. MINIMUM UNOBSTRUCTED VERTICAL CLEARANCE: 13'-6" (NFPA 1 SECTION 18.2.3.5.1.2)
- ACCESS ROADS ARE TO BE DESIGNED AND MAINTAINED TO SUPPORT THE IMPOSED LOADS OF RESPONDING APPARATUS WITH AN ALL WEATHER DRIVING SURFACE PROVIDED.
- ACCESS ROADS ARE TO MAINTAIN THE REQUIRED CLEAR WIDTH ALONG TURNS. RADIUS OF TURN IS TO BE APPROVED BY HUDSON FIRE DEPARTMENT.
- 8. A FIRE HYDRANT IS LOCATED TO THE SOUTH ON LOWELL ROAD AND IS WITHIN 400 FT OF THE BUILDING AS REQUIRED BY NFPA 1 18.5.3(1).
- 9. THE BUILDING WILL BE PROVIDED WITH AN NFPA 13 SPRINKLER SYSTEM AND NFPA 72 FIRE ALARM, 2019 EDITIONS. BUILDING TO BE DESIGNED AND CONSTRUCTED IN ACCORDANCE WITH THE NH SATE FIRE AND BUILDING CODES INCLUDING BUT NOT LIMITED TO, THE 2021 INTERNATIONAL BUILDING CODE AND THE 2021 EDITIONS OF NFPA 1, THE UNIFORM FIRE CODE AND 101, THE LIFE SAFETY CODE.
- 10. THE PROPOSED +/- 6,855 FT² BUILDING (GROSS AREA, ALL FLOORS) IS A BUILDING OTHER THAN ONE- AND TWO-FAMILY DWELLING. BASED UPON TYPE II(000) CONSTRUCTION, NFPA 1 TABLE 18.4.5.2.1 REQUIRES A FIRE FLOW OF 1750GPM FOR A DURATION OF 2 HOURS. ASSUMING THE BUILDING WILL BE SPRINKLERED WITH QUICK RESPONSE SPRINKLERS, THE FIRE FLOW CAN BE REDUCED BY 75% PER NFPA 1 §18.4.5.3.3. THE DURATION IS A MAXIMUM OF 2 HOURS DUE TO SPRINKLER PROTECTION PER NFPA 1 §18.4.5.3.4. THE MINIMUM FIRE FLOW CANNOT BE LESS THAN 600GPM PER NFPA 1 §16.4.5.3.3. THEREFORE, THE RESULTING FIRE FLOW IS 600GPM. A HYDRANT FLOW TEST WILL BE REQUIRED FOR SPRINKLER DESIGN AND TO CONFIRM THAT THE REQUIRED FIRE FLOW IS AVAILABLE.

1	Addressed F&	O & Fire Dept Comments	1/7/2025
No.	Revision		Date
Desig	ned by: JRB	Drawn by: BRC	Checked by: DMF
Fire Protection Plan <b>Commercial Development</b> <b>Inside Out Painting and Remodeling</b> <b>100 Lowell Road</b> <b>Hudson, NH</b> Assessors Map 198 Lot 147 Windham, New Hampshire Portland, Maine			
Sheet 6 of 10	S	cale: 1" = 20'	Date: 10/2/2024
DANIEL M. FLORES No. 15761	Prepared for: 100 Lowell Ro 122 Lowell Ro Hudson, NH (	d LLC oad, Suite 3	Hudson Planning Board Approval
CNAL STUDIE		Zoning Classifica	tion: B - Buisness

Drawing: 667710 Fire Protection Plan Layout: Fire Protection Plan - 6

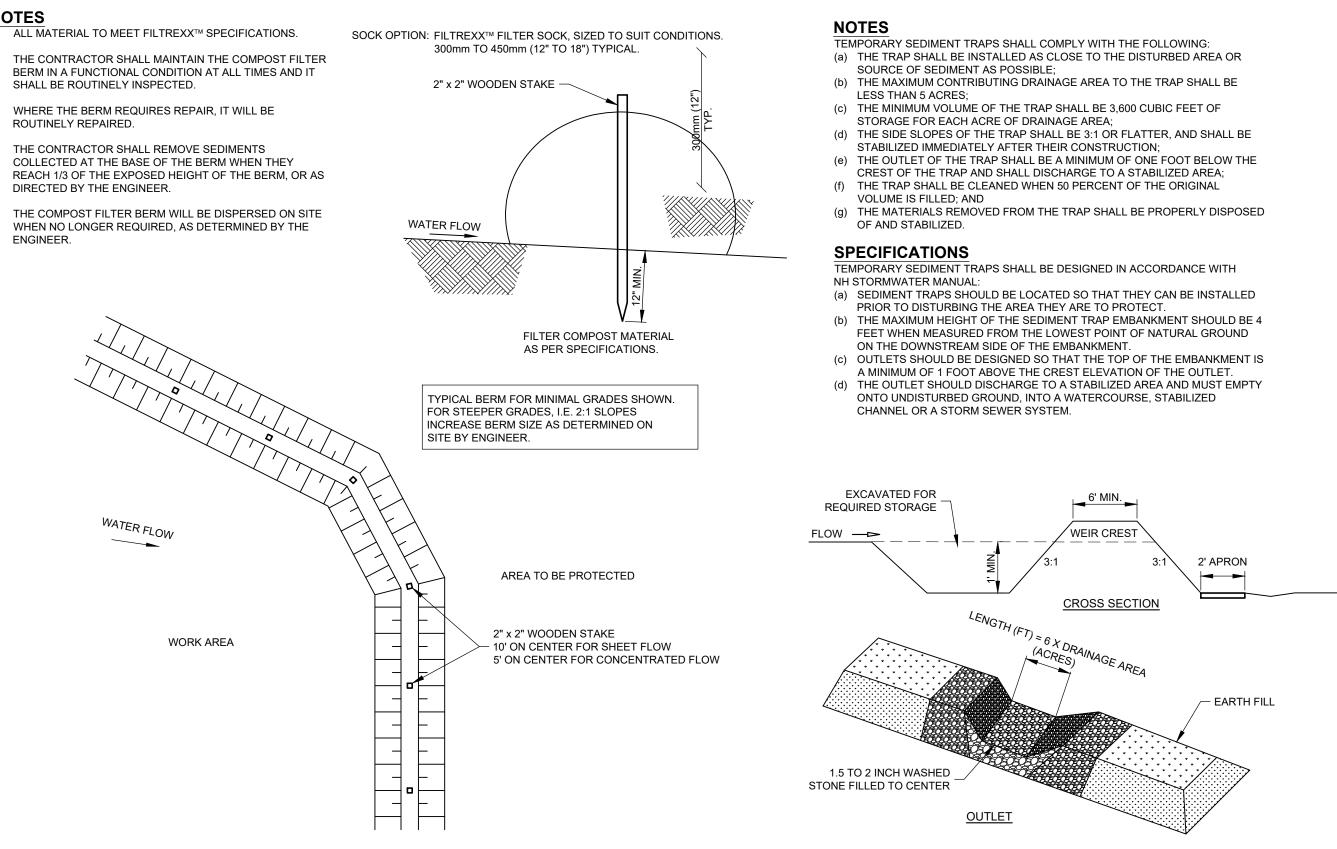
### **TEMPORARY SEEDING SPECIFICATIONS** REFERENCE NH STORMWATER MANUAL: VOLUME 3, REVISION 1.0

### **A) SITE PREPARATION**

- 1. INSTALL NEEDED EROSION AND SEDIMENT CONTROL MEASURES SUCH AS SILTATION BARRIERS, DIVERSIONS, AND SEDIMENT TRAPS.
- 2. GRADE AS NEEDED FOR THE ACCESS OF EQUIPMENT FOR SEEDBED PREPARATION, SEEDING, MULCH APPLICATION, AND MULCH ANCHORING.
- 3. RUNOFF SHOULD BE DIVERTED FROM THE SEEDED AREA.
- 4. ON SLOPES 4:1 OR STEEPER, THE FINAL PREPARATION SHOULD INCLUDE CREATING HORIZONTAL GROOVES PERPENDICULAR TO THE DIRECTION OF THE SLOPE TO CATCH SEED AND REDUCE RUNOFF.

### B) SEEDBED PREPARATION

- 1. STONES AND TRASH SHOULD BE REMOVED SO AS NOT TO INTERFERE WITH THE SEEDING AREA. 2. WHERE THE SOIL HAS BEEN COMPACTED BY CONSTRUCTION OPERATIONS, LOOSEN SOIL TO A DEPTH OF 2 INCHES BEFORE APPLYING FERTILIZER, LIME AND SEED.
- 3. IF APPLICABLE, FERTILIZER AND ORGANIC SOIL AMENDMENTS SHOULD BE APPLIED DURING THE GROWING SEASON. FERTILIZER SHALL ONLY BE USED BASED ON SOIL TEST RESULTS. FERTILIZER SHALL BE RESTRICTED TO A ZERO PHOSPHATE, SLOW RELEASE NITROGEN FERTILIZER. NO FERTILIZER SHALL BE USED WITHIN THE PROTECTIVE WELL RADIUS, AND WITHIN 25 FEET OF A SURFACE WATER BODY. RATE OF APPLICATION SHALL BE PER MANUFACTURER AND SOIL TEST RESULTS.


### C) SEEDING:

- 1. SELECT SEED FROM TABLE BELOW.
- 2. APPLY SEED UNIFORMLY BY HAND, CYCLONE SEEDER, DRILL, CULTIPACKER TYPE SEEDER OR HYDROSEEDER (SLURRY INCLUDING SEED AND FERTILIZER). NORMAL SEEDING DEPTH IS FROM  $\frac{1}{4}$  TO  $\frac{1}{2}$ INCH. HYDROSEEDING THAT INCLUDES MULCH MAY BE LEFT ON SOIL SURFACE. SEEDING RATES MUST **BE INCREASED 10 % WHEN HYDROSEEDING**
- 3. TEMPORARY SEEDING SHOULD TYPICALLY OCCUR PRIOR TO SEPTEMBER 15TH. 4. AREAS SEEDED BETWEEN MAY 15TH AND AUGUST 15TH SHOULD BE COVERED WITH HAY OR STRAW
- MULCH, ACCORDING TO THE "TEMPORARY AND PERMANENT MULCHING" PRACTICE. 5. VEGETATED GROWTH COVERING AT LEAST 85% OF THE DISTURBED AREA SHOULD BE ACHIEVED PRIOR TO OCTOBER 15TH. IF THIS CONDITION IS NOT ACHIEVED, IMPLEMENT OTHER TEMPORARY
- STABILIZATION MEASURES FOR OVERWINTER PROTECTION. 6. PROVIDE MULCH WHERE IT IS IMPRACTICAL TO INCORPORATE SEED INTO MOIST SOIL. THE SEEDED AREA SHOULD BE MULCHED TO FACILITATE GERMINATION. REFERENCE NH STORMWATER MANUAL: VOLUME 3 FOR TEMPORARY AND PERMANENT MULCHING REQUIREMENTS.

PLANT SELECTION AND SEEDING RATES						
SPECIES	PER ACRE BUSHELS (BU) OR POUNDS (LBS)	PER 1,000 SF	REMARKS			
WINTER RYE	2 BU OR 112 LBS	2.5 LBS	BEST FOR FALL SEEDING. SEED FROM MAY 15 TO JUNE 15 FOR BEST COVER. SEED TO A DEPTH OF 1 INCH.			
OATS	2.5 BU OR 80 LBS	2 LBS	BEST FOR SPRING SEEDINGS. SEED NO LATER THAN MAY 15 FOR SUMMER PROTECTIONS. SEED TO A DEPTH OF 1 INCH.			
ANNUAL RYEGRASS	40 LBS	1 LB	GROWS QUICKLY, BUT IS OF SHORT DURATION. USE WHERE APPEARANCES ARE IMPORTANT. SEED EARLY SPRING AND/OR BETWEEN AUGUST 15 AND SEPTEMBER 15. COVER THE SEED WITH NO MORE THAN 0.25 INCH OF SOIL.			
PERENNIAL RYEGRASS	30 LBS	0.7 LB	GOOD COVER WHICH IS LONGER LASTING THAN ANNUAL RYEGRASS. SEED BETWEEN APRIL 1 AND JUNE 1 AND/OR BETWEEN AUGUST 15 AND SEPTEMBER 15. MULCHING WILL ALLOW SEEDING THROUGHOUT THE GROWING SEASON. SEED TO A DEPTH OF APPROXIMATELY 0.5 INCH.			

### NOTES

- 2. THE CONTRACTOR SHALL MAINTAIN THE COMPOST FILTER BERM IN A FUNCTIONAL CONDITION AT ALL TIMES AND IT
- 3. WHERE THE BERM REQUIRES REPAIR, IT WILL BE ROUTINELY REPAIRED.
- 4. THE CONTRACTOR SHALL REMOVE SEDIMENTS COLLECTED AT THE BASE OF THE BERM WHEN THEY REACH 1/3 OF THE EXPOSED HEIGHT OF THE BERM, OR AS DIRECTED BY THE ENGINEER.
- 5. THE COMPOST FILTER BERM WILL BE DISPERSED ON SITE WHEN NO LONGER REQUIRED, AS DETERMINED BY THE ENGINEER.



# SILT SOCK INSTALLATION DETAIL

NOT TO SCALE

### CONSTRUCTION SPECIFICATIONS 1. STONE FOR A STABILIZED CONSTRUCTION EXIT SHALL BE MINIMUM 3 INCH

- CRUSHED STONE. 2. THE MINIMUM LENGTH OF THE PAD SHOULD BE 75 FEET, EXCEPT THAT THE
- THAN 6 INCHES. ROAD OR 10 FEET, WHICHEVER IS GREATER.
- 5. GEOTEXTILE FILTER CLOTH SHALL BE PLACED OVER THE ENTIRE AREA PRIOR TO PLACING THE STONE.
- BY VEHICLES MAY BE ADDED.
- SUITABLE OUTLET PROTECTION.

### MAINTENANCE

- ENTERING STORM DRAINS, DITCHES, OR WATERWAYS.

APPROVED BY HUDSON, NH PLANNING BOARD	
DATE OF MEETING:	

SIGNATUR

SIGNATURE DATE:

SIGNATURE DATE:

SIGNATURE

PURSUANT TO THE SITE REVIEW

REGULATIONS OF

PLANNING BOARD

THE HUDSON

THE SITE PLAN APPROVAL

**GRANTED HEREIN** 

EXPIRES ONE YEAR

FROM DATE OF APPROVAL.

SITE PLANS ARE VALID FOR TWO YEARS FROM THE DATE OF PLANNING BOARD MEETING DATE AT WHICH THE PLAN RECIEVES FINAL APPROVAL

### **TEMPORARY SEDIMENT TRAP** NOT TO SCALE

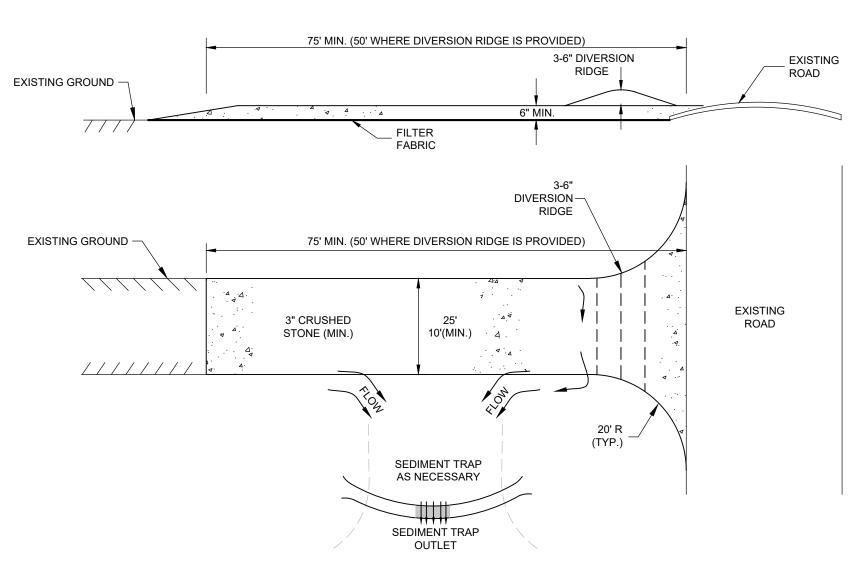
NATURAL STATE.

DISPOSE OF DEBRIS.

### WORK

### DUST CONTROL NOTES

PREVENT RUNOFF AND PONDING.


MINIMUM LENGTH MAY BE REDUCED TO 50 FEET IF A 3-INCH TO 6-INCH HIGH BERM IS INSTALLED AT THE ENTRANCE OF THE PROJECT SITE. 3. THE THICKNESS OF THE STONE FOR THE STABILIZED EXIT SHALL NOT BE LESS

4. THE PAD SHOULD EXTEND THE FULL WIDTH OF THE CONSTRUCTION ACCESS

6. ALL SURFACE WATER SHALL BE DIRECTED AWAY FROM THE EXIT. IF WATER IS FLOWING TOWARD THE EXIT, A BERM WITH 5:1 SLOPES THAT CAN BE CROSSED

7. THE PAD SHOULD BE MAINTAINED OR REPLACED WHEN MUD AND SOIL PARTICLES CLOG THE VOIDS IN THE STONE SUCH THAT THE CONTROL PAD BECOMES INEFFECTIVE AND MUD AND SOIL PARTICLES ARE TRACKED OFF-SITE. NATURAL DRAINAGE THAT CROSSES THE LOCATION OF THE STONE PAD SHOULD BE INTERCEPTED AND PIPED BENEATH THE PAD, AS NECESSARY, WITH

WHEN THE CONTROL PAD BECOMES INEFFECTIVE, THE STONE SHOULD BE REMOVED ALONG WITH THE COLLECTED SOIL MATERIAL, REGRADED ON SITE AND STABILIZED. THE EXIT SHOULD THEN BE RECONSTRUCTED. 2. THE CONTRACTOR SHOULD SWEEP THE PAVEMENT AT EXITS WHENEVER SOIL MATERIALS ARE TRACKED ONTO THE ADJACENT PAVEMENT OR TRAVELED WAY. WHEN WHEEL WASHING IS REQUIRED, IT SHOULD BE CONDUCTED ON AN AREA STABILIZED WITH AGGREGATE, WHICH DRAINS INTO AN APPROVED SEDIMENT-TRAPPING DEVICE. ALL SEDIMENT SHOULD BE PREVENTED FROM



### **TEMPORARY GRAVEL CONSTRUCTION EXIT** NOT TO SCALE

# CONSTRUCTION SEQUENCE

INSTALL PERIMETER EROSION CONTROL MEASURES. TEMPORARY EROSION AND SEDIMENT CONTROL PRACTICES SHALL BE INSTALLED PRIOR TO ANY EARTH MOVING OPERATION. EROSION CONTROL MEASURES SHALL BE INSTALLED AS SHOWN ON THE PLANS AND SHALL CONFORM TO ALL APPLICABLE SECTIONS OF THE NH STORMWATER MANUAL, VOLUME 3, DATED DECEMBER 2008.

2. CUT AND CLEAR TREES. IDENTIFY TREES TO BE SAVED AND INSTALL PROTECTIVE FENCES AROUND THESE TREES. CUT TREES, CLEAR AND

3. INSTALL OTHER EROSION CONTROL MEASURES. TEMPORARY AND PERMANENT EROSION, SEDIMENT AND DETENTION PRACTICES -INCLUDING PONDS AND SWALES -- SHALL BE INSTALLED PRIOR TO ROUGH GRADING. PERMANENT STORMWATER TREATMENT SYSTEMS ARE TO BE CONSTRUCTED AND SEEDED AS SOON AS PRACTICAL SO THAT VEGETATION MAY BE ESTABLISHED PRIOR TO DIRECTING RUNOFF TO THEM. ADDITIONAL STORMWATER MANAGEMENT PRACTICES SHALL BE IMMEDIATELY INSTALLED WHEN NECESSARY AND APPROPRIATE DURING CONSTRUCTION.

4. PROTECT DRAINAGE STRUCTURES. DURING CONSTRUCTION, ALL DRAINAGE INLETS SHALL BE PROTECTED BY INSTALLING A GEOTEXTILE BARRIER UNDER THE GRATE OR BY INSTALLING A STONE CHECK DAM AROUND THE PERIMETER OF THE GRATE.

5. CLEAR AND GRUB, STRIP ORGANIC SOILS. LOAM SHALL BE STRIPPED FROM THE SITE AS REQUIRED. THE SMALLEST PRACTICAL AREA SHALL BE EXPOSED AT ANY TIME AND SHALL NOT EXCEED ONE ACRE. UNSTABILIZED SOIL SHALL BE TEMPORARILY STABILIZED AS SOON AS PRACTICABLE BUT NO LATER THAN 45 DAYS AFTER INITIAL DISTURBANCE.

6. STABILIZE STOCKPILES. SOIL STOCKPILES SHALL BE LOCATED AND PROTECTED TO MINIMIZE EROSION. INSTALL SILT FENCING AROUND THE BASE OF ALL STOCKPILES ON THE DOWNHILL SIDE.

INSPECT AND MAINTAIN ALL EROSION CONTROL MEASURES. ALL PRACTICES ARE TO BE INSPECTED AND MAINTAINED THROUGHOUT THE CONSTRUCTION PERIOD ACCORDING TO RECOMMENDED SCHEDULED, BUT AT LEAST ONCE PER WEEK, AND DURING RAINFALL EVENTS IN WHICH ½ INCH OF PRECIPITATION OR MORE FALLS WITHIN A 24 HOUR PERIOD. THE BOTTOM OF SEDIMENT BASINS SHALL BE PERIODICALLY CLEANED, WITH SEDIMENT REMOVED TO A SECURE LOCATION. ALL DAMAGED SILT FENCES SHALL BE REPAIRED. SEDIMENT DEPOSITS SHALL BE PERIODICALLY REMOVED.

8. GRADE AND GRAVEL AREAS TO BE PAVED. ROADWAYS AND PARKING LOTS SHALL BE GRADED, AND UNDERGROUND UTILITIES SHALL BE INSTALLED. GRAVEL SHALL BE INSTALLED AS SOON AS PRACTICAL. THESE AREAS SHALL BE STABILIZED WITHIN 72 HOURS OF ACHIEVING FINISH GRADE. ALL FILL MATERIAL SHALL BE FREE FROM STUMPS, ROOTS, WOOD, ETC.

9. STABILIZE DISTURBED AREAS. BEGIN SEED AND MULCH OF ALL DISTURBED AREAS AS SOON AS PRACTICAL, BUT NO LATER THAN THREE DAYS AFTER FINAL GRADING. ALL CUT AND FILL SLOPES SHALL BE SEEDED AND MULCHED WITHIN 72 HOURS OF ACHIEVING FINISHED GRADE. A MINIMUM OF 6" OF LOAM SHALL BE INSTALLED, WITH SEED, LIME, AND FERTILIZER APPLIED.

10. FINISH SURFACE, INSTALL FINISH SURFACE ON ROADWAYS AND PARKING LOTS.

11. COMPLETE PERMANENT SEEDING AND LANDSCAPING. SPREAD LOAM AND STABILIZE PER PLANS AND SPECIFICATIONS.

12. NO MORE THAN 5 ACRES SHALL BE DISTURBED (NOT STABILIZED) AT ANY TIME.

13. AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED:

i) BASE COURSE GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE PAVED; ii) A MINIMUM OF 85% VEGETATED GROWTH HAS BEEN ESTABLISHED;

iii) A MINIMUM OF 3" OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIPRAP HAS BEEN INSTALLED; OR iv) EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.

CLEAN-UP, THE TEMPORARY EROSION CONTROL SYSTEMS SHALL BE REMOVED AND THE AREA RETURNED AS NEAR AS POSSIBLE TO ITS

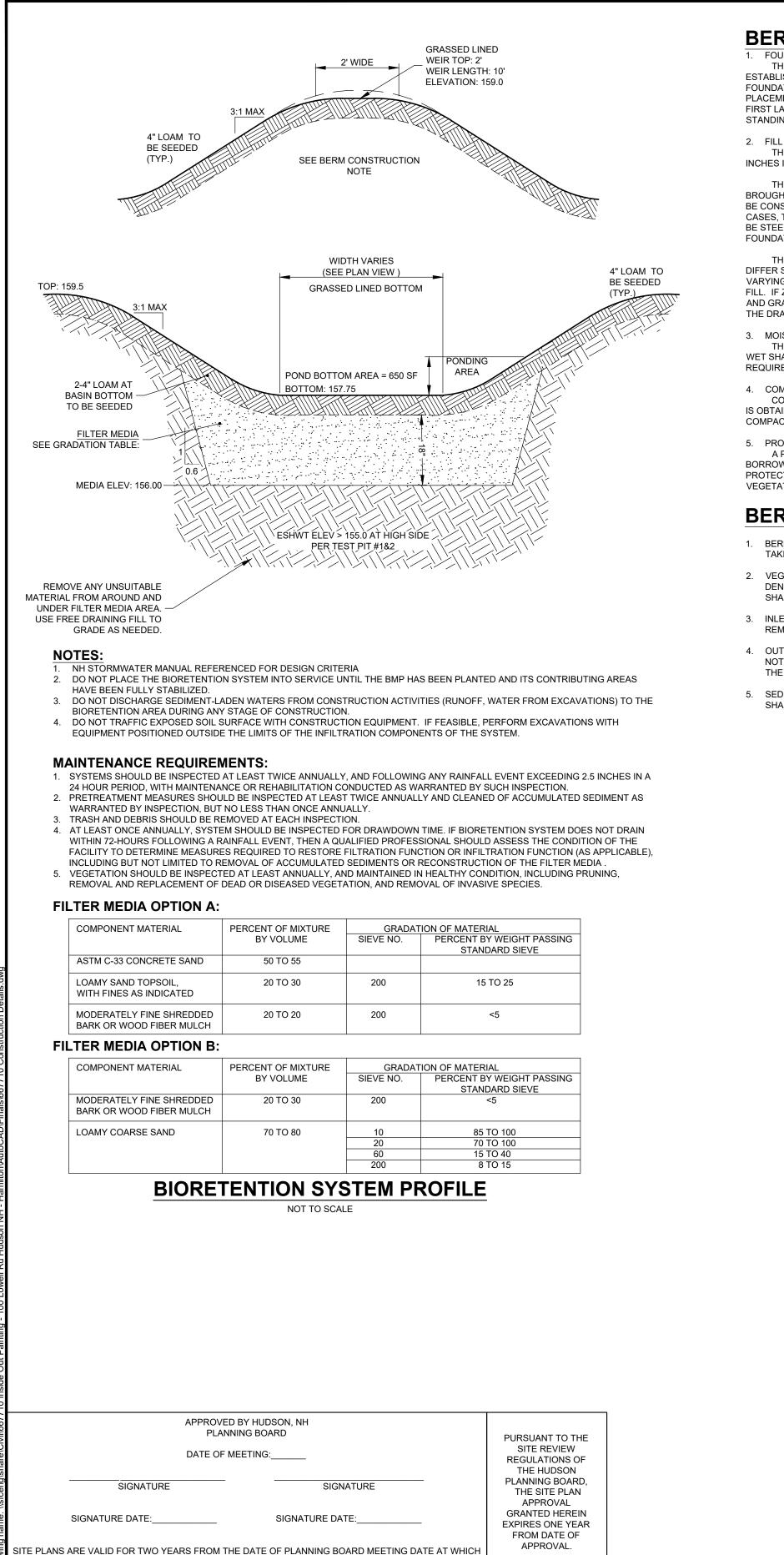
14. REMOVE TEMPORARY EROSION CONTROL MEASURES. AFTER CONSTRUCTION IS COMPLETED AND THE AREAS ARE STABILIZED (MINIMUM 85% VEGETATIVE COVER, BASE COURSE GRAVELS INSTALLED, 3" NON-EROSIVE MATERIAL INSTALLED, OR EROSION CONTROL BLANKET INSTALLED) IN THE DISTURBED AREAS. THE AREAS IN AND AROUND THE TEMPORARY EROSION CONTROL SYSTEMS SHALL BE CLEANED UP. WITH CARE BEING TAKEN NOT TO ALLOW THE ACCUMULATION OF SILT TO RUN INTO THE WETLANDS AND / OR PROTECTED AREAS. AFTER

### 15. WINTER CONSTRUCTION NOTES:

i) ALL PROPOSED VEGETATED AREAS THAT DO NOT EXHIBIT A MINIMUM OF 85% VEGETATIVE GROWTH BY OCTOBER 15, OR WHICH ARE DISTURBED AFTER OCTOBER 15, SHALL BE STABILIZED BY SEEDING AND INSTALLING EROSION CONTROL BLANKETS ON SLOPES GREATER THAN 3:1, AND SEEDING AND PLACING 3 TO 4 TONS OF MULCH PER ACRE. SECURED WITH ANCHORED NETTING, ELSEWHERE. THE INSTALLATION OF EROSION CONTROL BLANKETS OR MULCH AND NETTING SHALL NOT OCCUR OVER ACCUMULATED SNOW OR ON FROZEN GROUND AND SHALL BE COMPLETED IN ADVANCE OF THAW OR SPRING MELT EVENTS. ii) ALL DITCHES OR SWALES WHICH DO NOT EXHIBIT A MINIMUM OF 85% VEGETATIVE GROWTH BY OCTOBER 15, SHALL BE STABILIZED TEMPORARILY WITH STONE OR EROSION CONTROL BLANKETS APPROPRIATE FOR THE DESIGN FLOW CONDITIONS. iii) AFTER OCTOBER 15, INCOMPLETE ROAD OR PARKING SURFACES, WHERE WORK HAS STOPPED FOR THE WINTER SEASON, SHALL BE PROTECTED WITH A MINIMUM 3" OF CRUSHED GRAVEL PER (NHDOT ITEM 304.3)

16. MINIMUM REQUIREMENT: THE EROSION CONTROL MEASURES SHOWN ON THESE PLANS ARE THE MINIMUM NECESSARY DURING CONSTRUCTION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ENSURING THAT ADEQUATE EROSION CONTROL PRACTICES ARE EMPLOYED TO PREVENT EROSION AND SEDIMENTATION TO ADJACENT PROPERTIES, ROADS, OR DRAINAGE SYSTEMS.

17. THE TOWN OF HUDSON RESERVES THE RIGHT TO REQUIRE ANY ADDITIONAL EROSION CONTROL MEASURES AS NEEDED.


18. THE PARTY RESPONSIBLE FOR EROSION CONTROL MEASURES DURING CONSTRUCTION SHALL BE THE CONTRACTOR PERFORMING THE

1. STABILIZE SOILS AND ESTABLISH VEGETATION AS SOON AS POSSIBLE FOLLOWING EARTH DISTURBING ACTIVITIES.

2. MOISTEN EXPOSED SOIL SURFACES AS NEEDED AT A RATE OF 300 GALLONS PER ACRE. AVOID EXCESSIVE WATER APPLICATION TO

1	Added notes 17 & 18	1/7/2025				
No.	Revision	Date				
Desig	Checked by: DMF					
Designed by: JRB       Drawn by: BRC       Checked by: DMF         Erosion Control Details         Checked by: DMF         Inside Out Painting and Remodeling         100 Lowell Road         Hudson, NH         Assessors Map 198 Lot 147         OF SFCC         Windham, New Hampshire						
Portland, Maine Sheet 7 of 10	ENGINEERIN Scale: As Shown					
DANIEL M. FLORES No. 15761	Prepared for: 100 Lowell Road LLC 122 Lowell Road, Suite 3 Hudson, NH 03501	Hudson Planning Board Approval				
	Zoning Classification: B - Business					

Drawing: 667710 Construction Details Layout: Erosion Control Details - 7

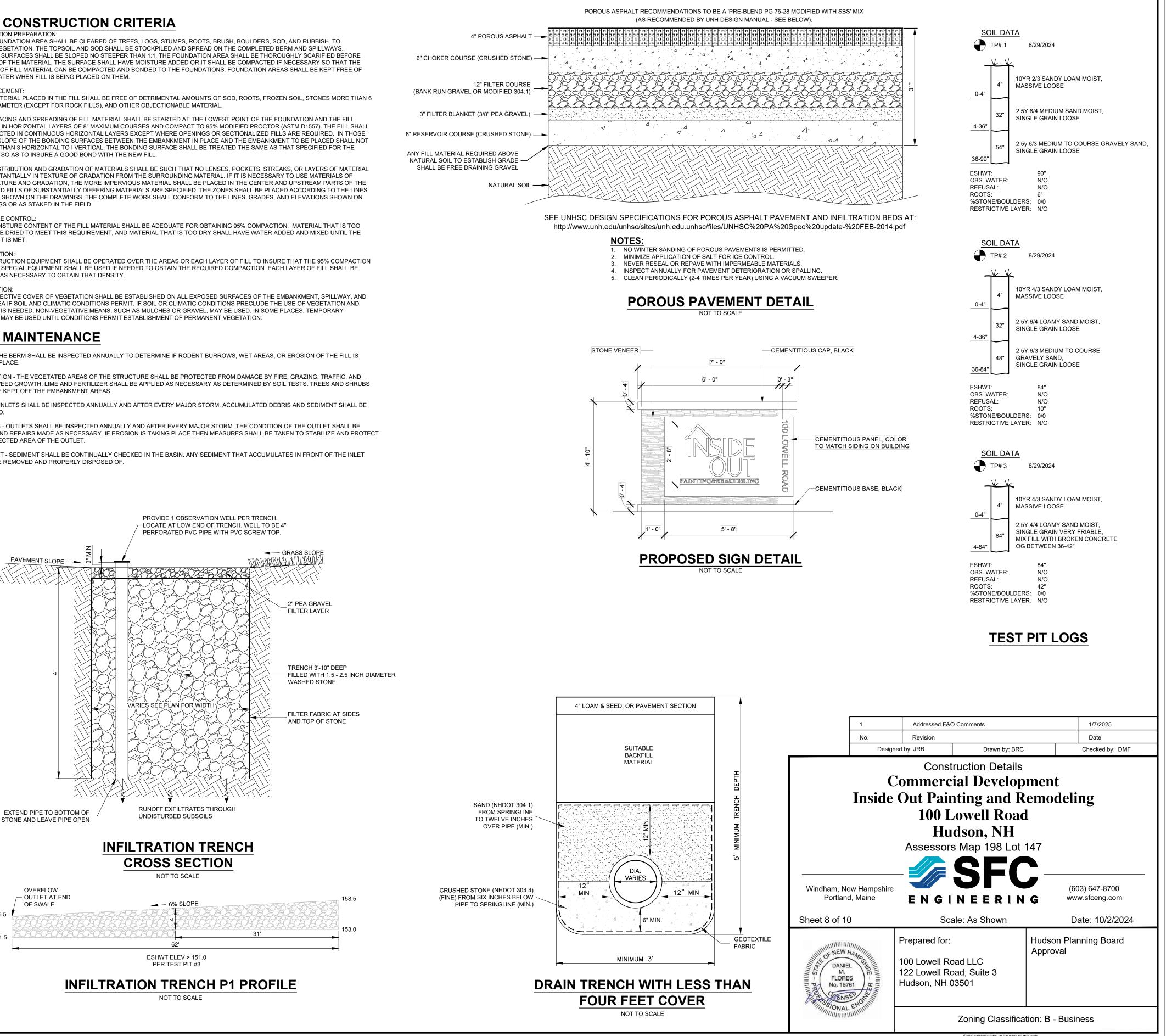


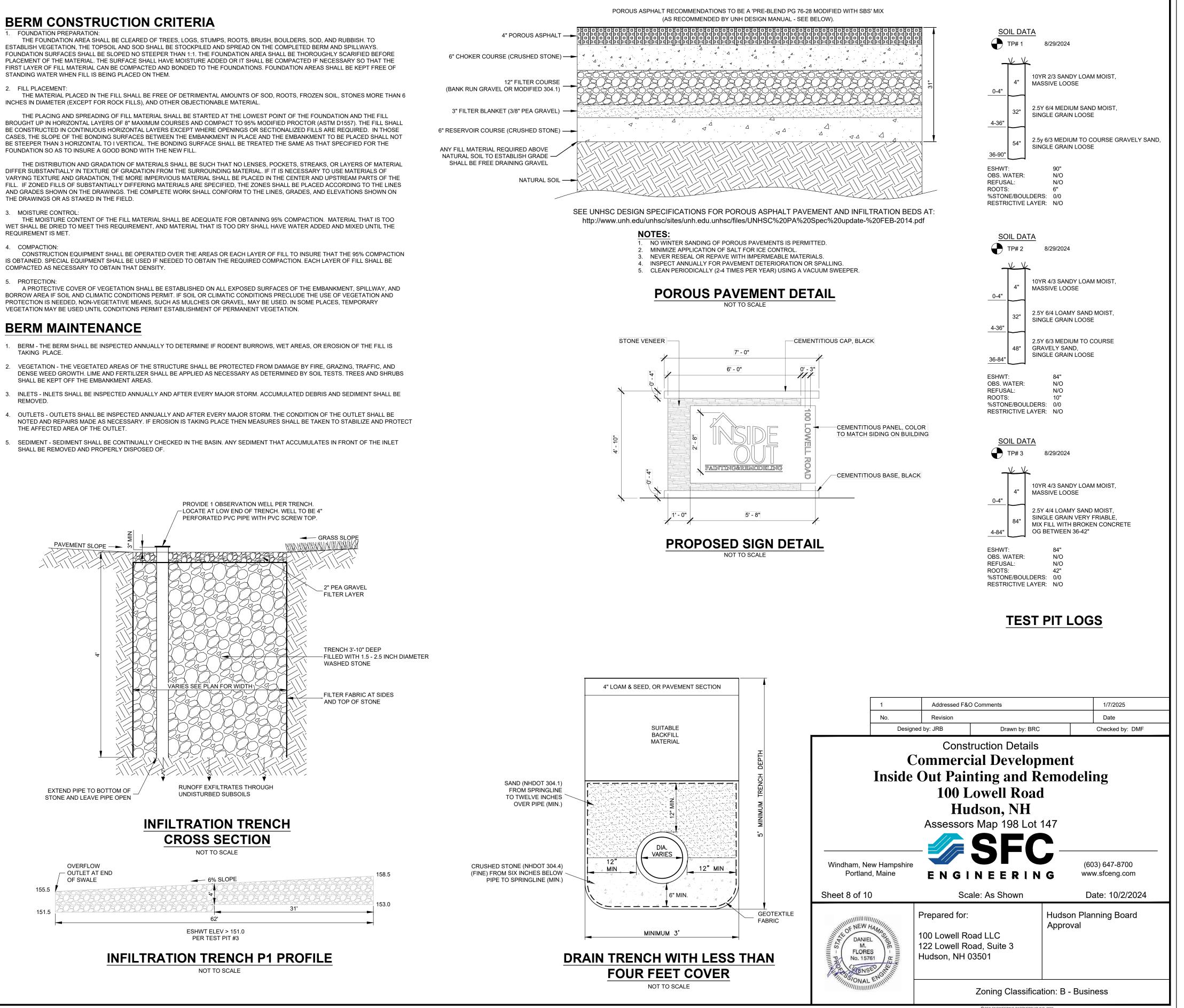
THE PLAN RECIEVES FINAL APPROVAL

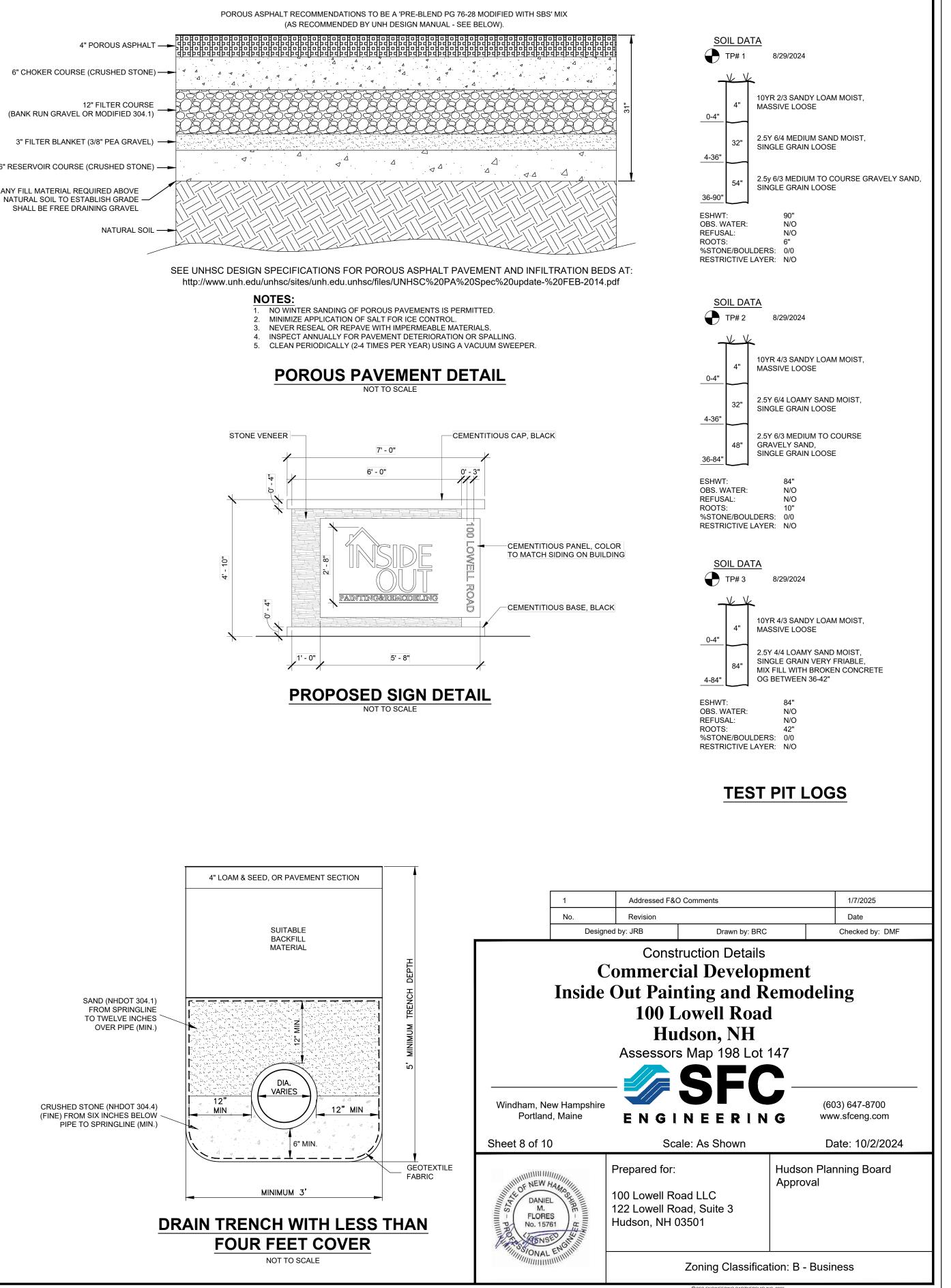
# 1 FOUNDATION PREPARATION

2. FILL PLACEMENT:

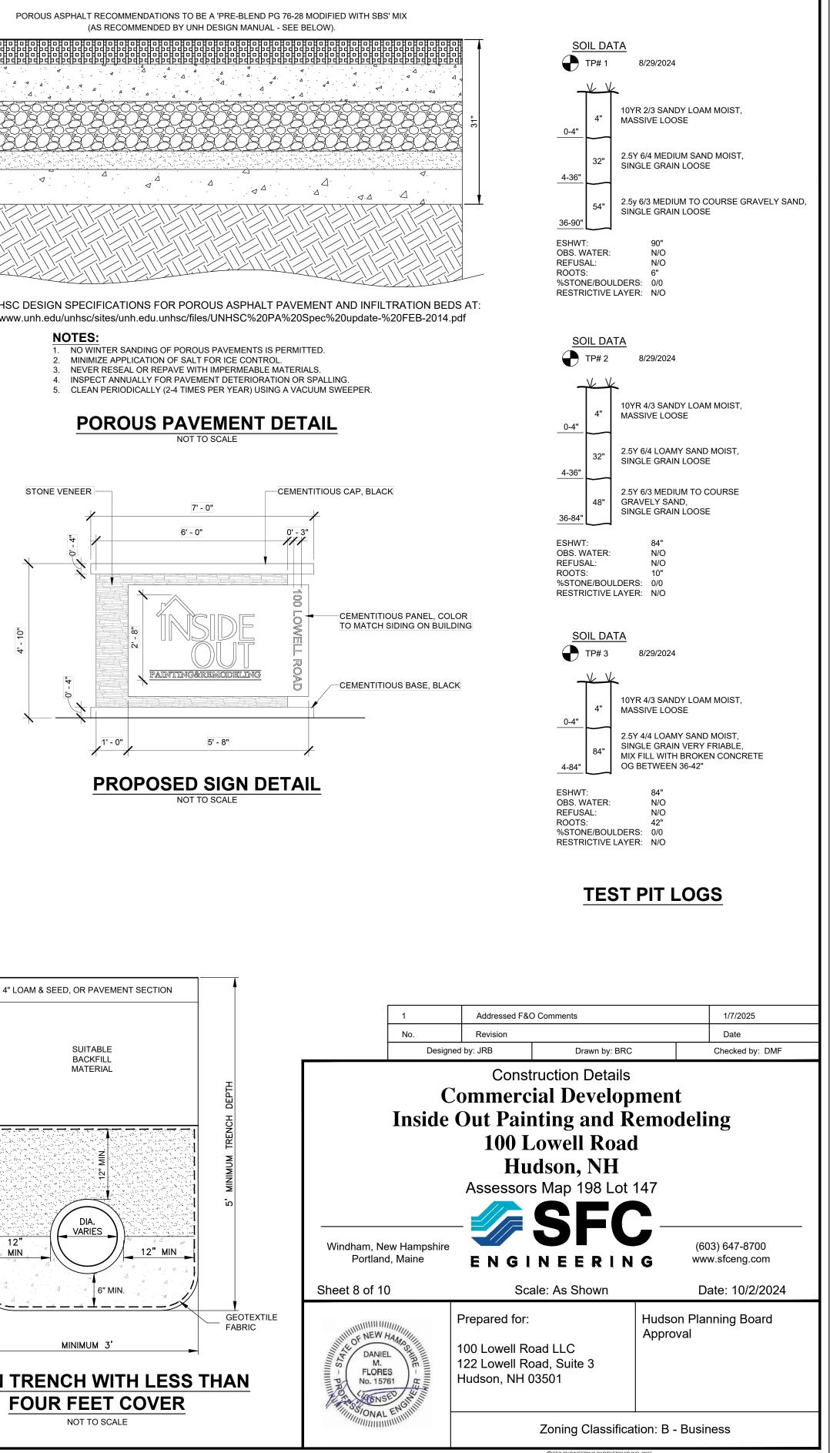
THE DRAWINGS OR AS STAKED IN THE FIELD.


3. MOISTURE CONTROL REQUIREMENT IS MET.

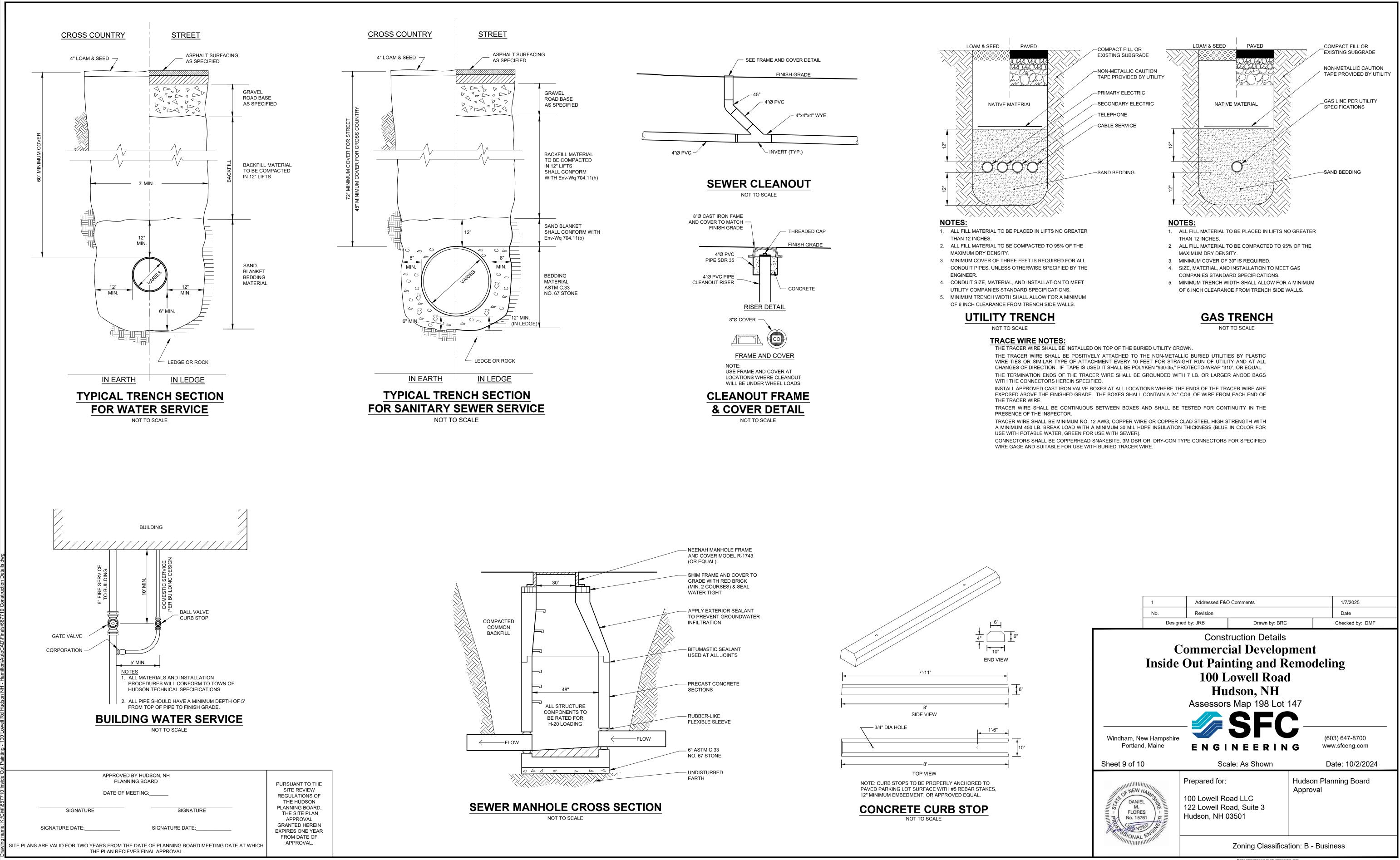

4. COMPACTION:

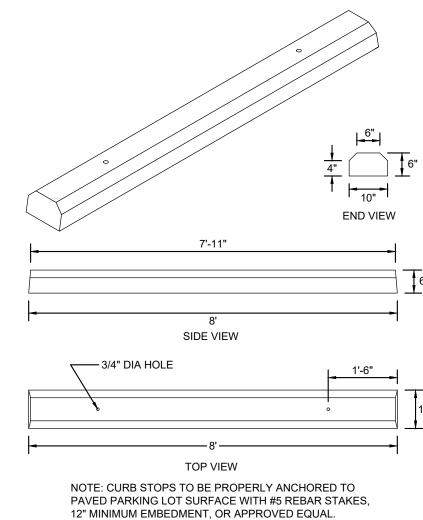

5. PROTECTION:

# **BERM MAINTENANCE**


- TAKING PLACE.
- 2. VEGETATION THE VEGETATED AREAS OF THE STRUCTURE SHALL BE PROTECTED FROM DAMAGE BY FIRE, GRAZING, TRAFFIC, AND DENSE WEED GROWTH. LIME AND FERTILIZER SHALL BE APPLIED AS NECESSARY AS DETERMINED BY SOIL TESTS. TREES AND SHRUBS SHALL BE KEPT OFF THE EMBANKMENT AREAS.
- REMOVED.
- THE AFFECTED AREA OF THE OUTLET.

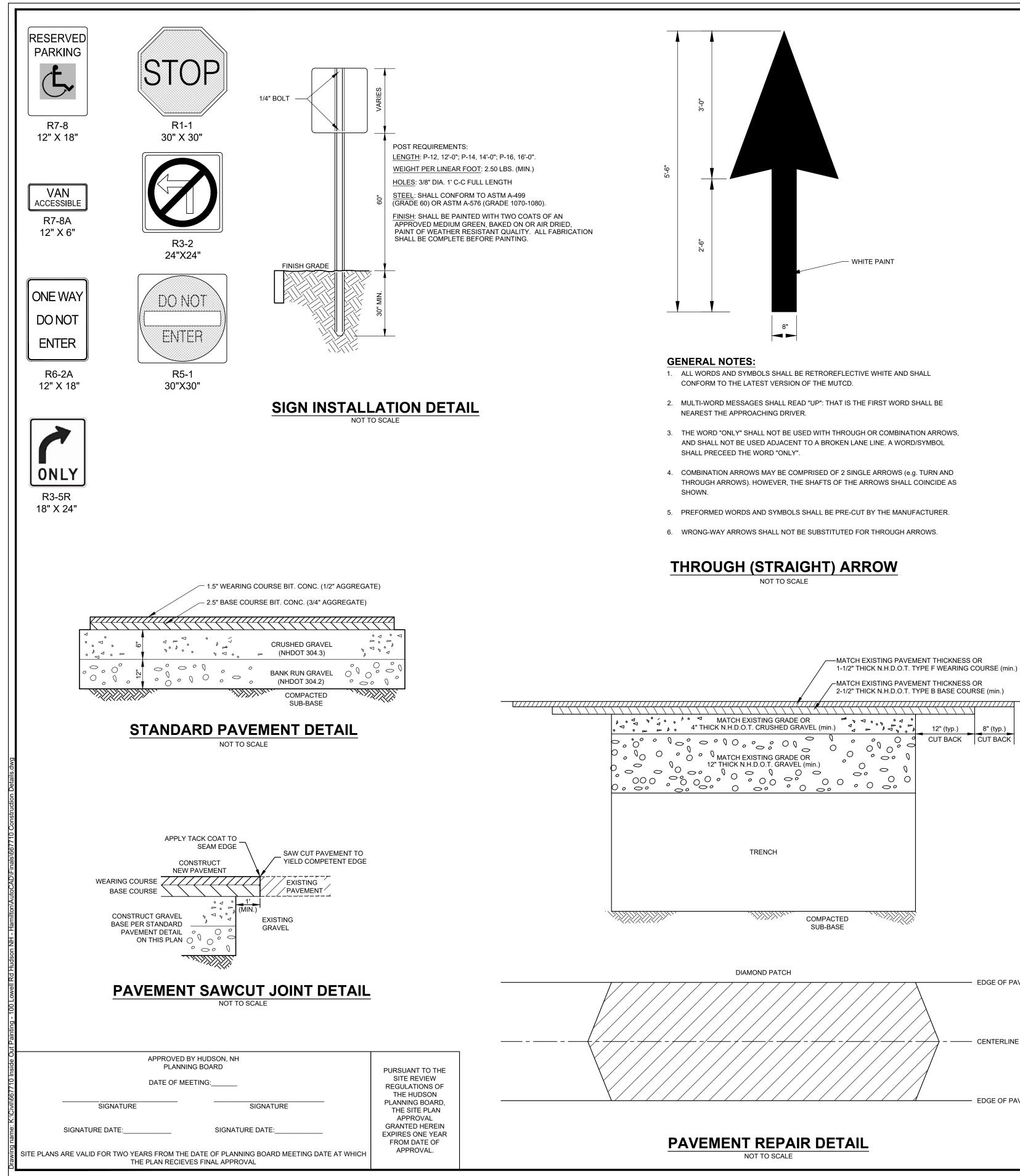





NC	DTES:
1.	NO WINTER SANDING OF POROUS PA
2.	MINIMIZE APPLICATION OF SALT FOR
3.	NEVER RESEAL OR REPAVE WITH IM
4.	INSPECT ANNUALLY FOR PAVEMENT
5.	<b>CLEAN PERIODICALLY (2-4 TIMES PER</b>




Drawing: 667710 Construction Details Layout: Construction Details - 8





1	Addressed F&O Comments		1/7/2025			
No.	Revision	Date				
Desig	ned by: JRB	Drawn by: BRC	Checked by: DMF			
Construction Details <b>Commercial Development</b> <b>Inside Out Painting and Remodeling</b> <b>100 Lowell Road</b> <b>Hudson, NH</b> Assessors Map 198 Lot 147 Windham, New Hampshire (603) 647-8700						
Portland, Maine Sheet 9 of 10	ENGINEERIN Scale: As Shown		G www.sfceng.com Date: 10/2/2024			
DANIEL M. FLORES No. 15761	Prepared for: 100 Lowell Ro 122 Lowell Ro Hudson, NH 0	ad, Suite 3	Hudson Planning Board Approval			
	Zoning Classification: B - Business					

Drawing: 667710 Construction Details Layout: Construction Details - 9



2. MULTI-WORD MESSAGES SHALL READ "UP": THAT IS THE FIRST WORD SHALL BE

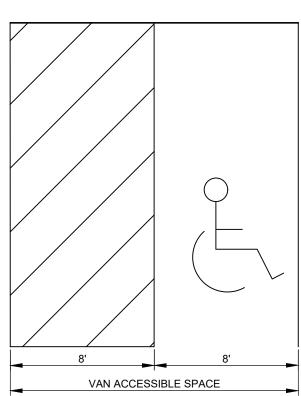
3. THE WORD "ONLY" SHALL NOT BE USED WITH THROUGH OR COMBINATION ARROWS, AND SHALL NOT BE USED ADJACENT TO A BROKEN LANE LINE. A WORD/SYMBOL

4. COMBINATION ARROWS MAY BE COMPRISED OF 2 SINGLE ARROWS (e.g. TURN AND THROUGH ARROWS). HOWEVER, THE SHAFTS OF THE ARROWS SHALL COINCIDE AS

5. PREFORMED WORDS AND SYMBOLS SHALL BE PRE-CUT BY THE MANUFACTURER.

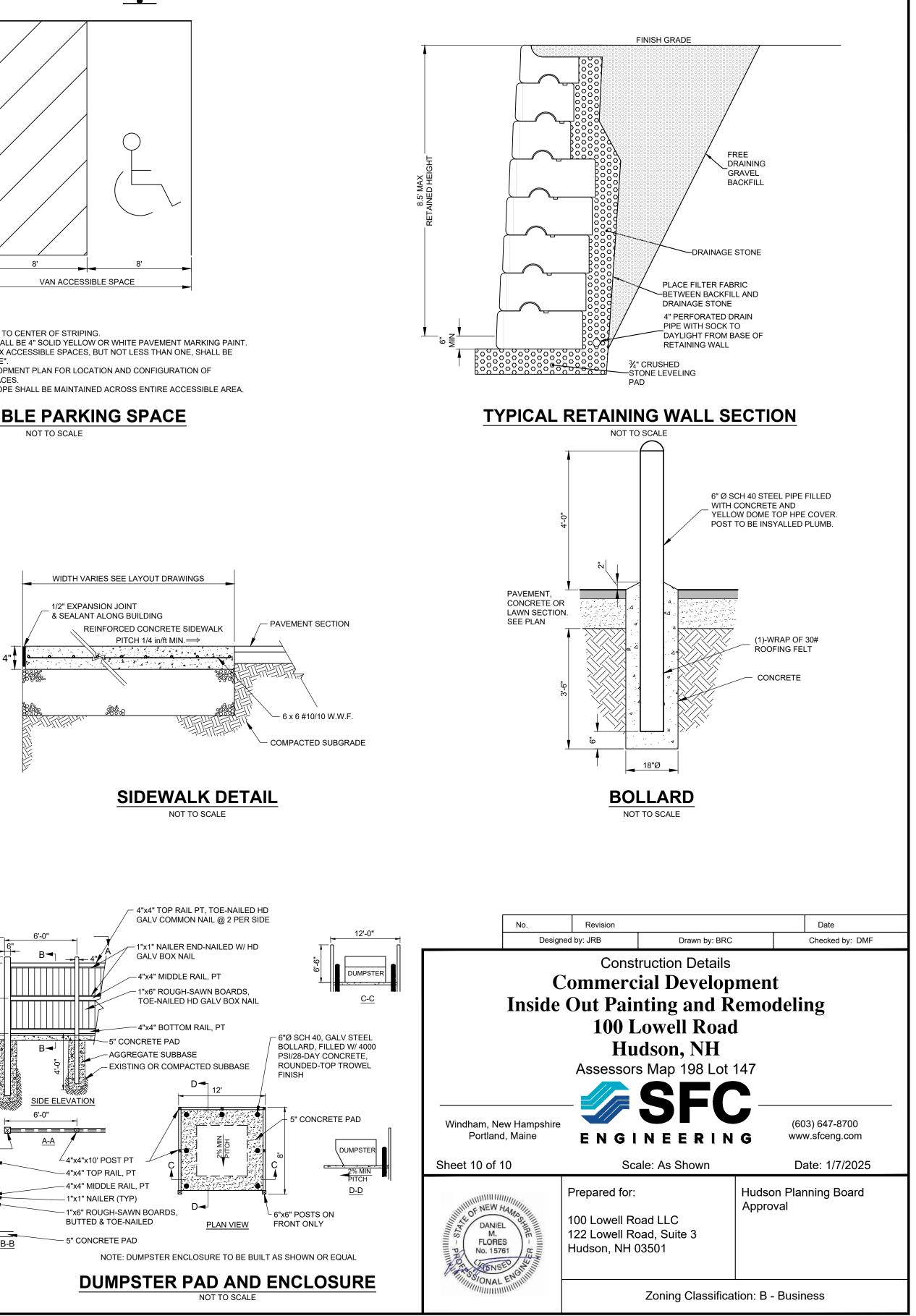
12" (typ.)

CUT BACK CUT BACK

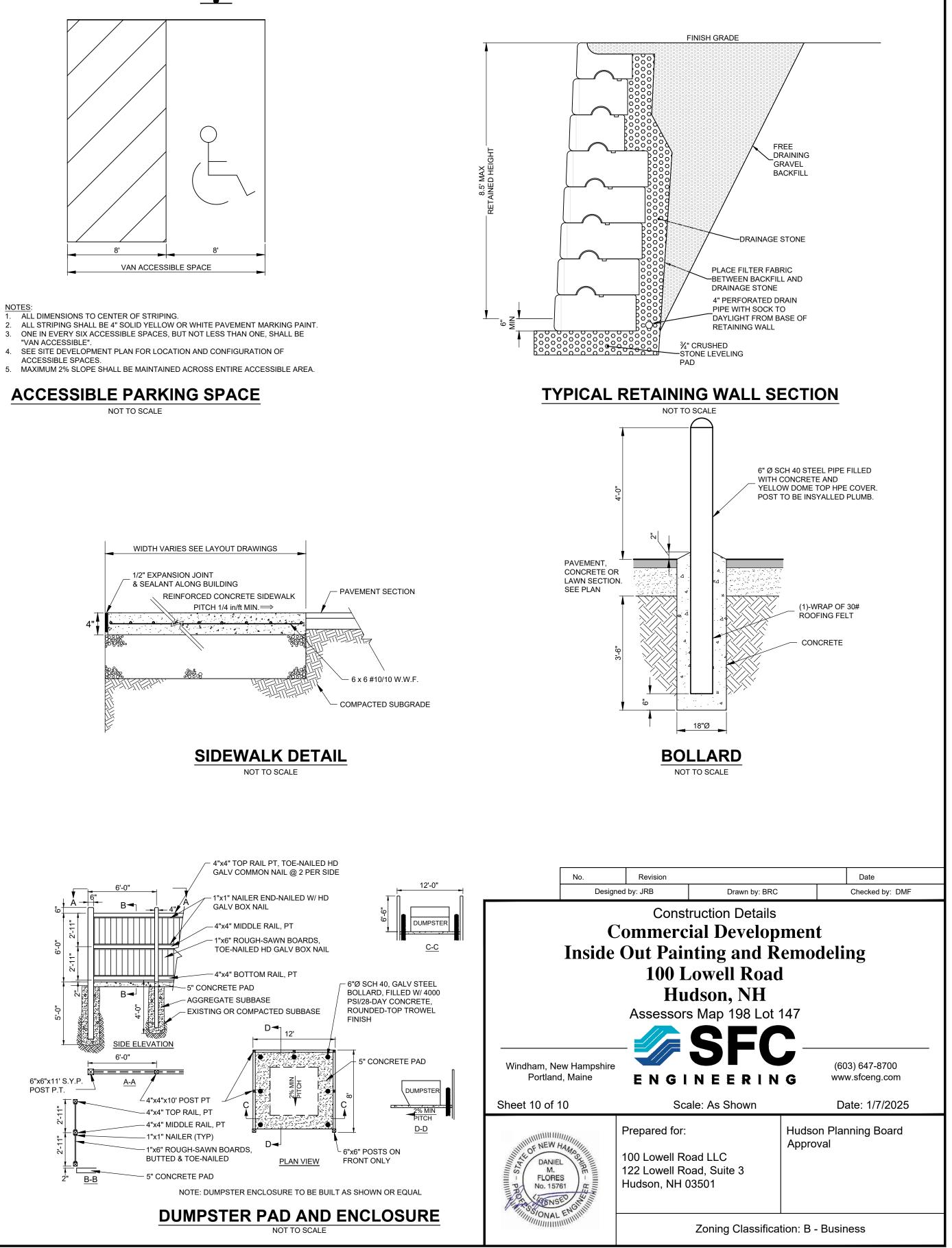

8" (typ.)

- EDGE OF PAVEMENT

- EDGE OF PAVEMENT


- CENTERLINE

6. WRONG-WAY ARROWS SHALL NOT BE SUBSTITUTED FOR THROUGH ARROWS.




- "VAN ACCESSIBLE".
- ACCESSIBLE SPACES.

NOT TO SCALE







UPRIGHT OR WALL SIGNS R7-8 AND R7-8A

> Drawing: 667710 Construction Details Layout: Construction Details - 10